• Title/Summary/Keyword: Typhoons MAYSAK.HAISHEN

Search Result 6, Processing Time 0.023 seconds

Study on the Inundation at the Merging Area of Osipcheon and Local Stream Using a Two-Dimensional Model (2차원 모형을 이용한 삼척오십천 소하천 합류 지점 침수해석에 관한 연구)

  • Do Jin Kim;Kye Won Jun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.61-66
    • /
    • 2023
  • In this study, we analyzed the flooded area around Samcheok Middle School caused by typhoons MAYSAK·HAISHEN in September 2020. To analyze the confluence of Samcheok Osipcheon, local stream Deungbongcheon, we utilized Iber, a two-dimensional hydraulic model. We simulated the water depth and flood extent based on the peak flows on September 3 and September 7, 2020, and the 80 year and 100 year frequency floods. The simulation results showed that the 80-year frequency flood and the 100-year frequency flood on September 7 were insignificantly different, but the maximum flow rate from September 3 to September 7 was significantly different at 401 m3/s, resulting in a difference of 0.8 m in water depth and 7.1 m2 in flood area. In addition, the analysis that considered only the contour lines using contour lines predicted inundation of not only the Samcheok Middle School playground but also the building, confirming the need to apply DSM.

The Moving Speed of Typhoons of Recent Years (2018-2020) and Changes in Total Precipitable Water Vapor Around the Korean Peninsula (최근(2018-2020) 태풍의 이동속도와 한반도 주변의 총가강수량 변화)

  • Kim, Hyo Jeong;Kim, Da Bin;Jeong, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.264-277
    • /
    • 2021
  • This study analyzed the relationship between the total precipitable water vapor in the atmosphere and the moving speed of recent typhoons. This study used ground observation data of air temperature, precipitation, and wind speed from the Korea Meteorological Administration (KMA) as well as total rainfall data and Red-Green-Blue (RGB) composite images from the U.S. Meteorological and Satellite Research Institute and the KMA's Cheollian Satellite 2A (GEO-KOMPSAT-2A). Using the typhoon location and moving speed data provided by the KMA, we compared the moving speeds of typhoon Bavi, Maysak, and Haishen from 2020, typhoon Tapah from 2019, and typhoon Kong-rey from 2018 with the average typhoon speed by latitude. Tapah and Kong-rey moved at average speed with changing latitude, while Bavi and Maysak showed a significant decrease in moving speed between approximately 25°N and 30°N. This is because a water vapor band in the atmosphere in front of these two typhoons induced frontogenesis and prevented their movement. In other words, when the water vapor band generated by the low-level jet causes frontogenesis in front of the moving typhoon, the high pressure area located between the site of frontogenesis and the typhoon develops further, inducing as a blocking effect. Together with the tropical night phenomenon, this slows the typhoon. Bavi and Maysak were accompanied by copious atmospheric water vapor; consequently, a water vapor band along the low-level jet induced frontogenesis. Then, the downdraft of the high pressure between the frontogenesis and the typhoon caused the tropical night phenomenon. Finally, strong winds and heavy rains occurred in succession once the typhoon landed.

Monitoring of Bathymetry Changes in the Coastal Area of Dokdo, East Sea (동해 독도 연안 해저지형 변동 모니터링 연구)

  • Chang Hwan Kim;Soon Young Choi;Won Hyuck Kim;Hyun Ok Choi;Chan Hong Park;Yun Bae Kim;Jong Dae Do
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.589-601
    • /
    • 2023
  • We compare high-resolution seabed bathymetry data and seafloor backscattering data acquired, using multi-beam, between 2018 and 2021 to understand topographic changes in the coastal area of Dokdo. The study area, conducted within a 500 m × 500 m in the southern coast between the islands where Dongdo Port is located, has been greatly affected by human activities, waves and ocean currents. The depth variations exhibit between 5 - 70 m. Irregular underwater rocks are distributed in areas with a depth of 20 m or less and 30 - 40 m. As a whole, water depth ranges similar in the east-west direction and become flatter and deeper. The bathymetry contour in 2020 tends to move south as a whole compared to 2018 and 2019. The south moving of the contours in the survey area indicates that the water depth is shallower than before. Since the area where the change in the depth occurred is mainly formed of sedimentary layers, the change in the coast of Dokdo were mainly caused by the inflow of sediments, due to the influence of wind and waves caused by these typhoons (Maysak and Haishen) in 2020. In the Talus area, which developed on the shallow coast between Dongdo and Seodo, the bathymetry changed in 2020 due to erosion or sedimentation, compared to the bathymetry in 2019 and 2018. It is inferred that the changes in the seabed environment occur as the coastal area is directly affected by the typhoons. Due to the influence of the typhoons with strong southerly winds, there was a large amount of sediment inflow, and the overall tendency of the changes was to be deposited. The contours in 2021 appears to have shifted mainly northward, compared to 2020, meaning the area has eroded more than 2020. In 2020, sediments were mainly moved northward and deposited on the coast of Dokdo by the successive typhoons. On the contrary, the coast of Dokdo was eroded as these sediments moved south again in 2021. Dokdo has been largely affected by the north wind in winter, so sediments mainly move southward. But it is understood that sediments move northward when affected by strong typhoons. Such continuous coastal change monitoring and analysis results will be used as important data for longterm conservation policies in relation to topographical changes in Dokdo.

Estimation of Significant Wave Heights from X-Band Radar Based on ANN Using CNN Rainfall Classifier (CNN 강우여부 분류기를 적용한 ANN 기반 X-Band 레이다 유의파고 보정)

  • Kim, Heeyeon;Ahn, Kyungmo;Oh, Chanyeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.101-109
    • /
    • 2021
  • Wave observations using a marine X-band radar are conducted by analyzing the backscattered radar signal from sea surfaces. Wave parameters are extracted using Modulation Transfer Function obtained from 3D wave number and frequency spectra which are calculated by 3D FFT of time series of sea surface images (42 images per minute). The accuracy of estimation of the significant wave height is, therefore, critically dependent on the quality of radar images. Wave observations during Typhoon Maysak and Haishen in the summer of 2020 show large errors in the estimation of the significant wave heights. It is because of the deteriorated radar images due to raindrops falling on the sea surface. This paper presents the algorithm developed to increase the accuracy of wave heights estimation from radar images by adopting convolution neural network(CNN) which automatically classify radar images into rain and non-rain cases. Then, an algorithm for deriving the Hs is proposed by creating different ANN models and selectively applying them according to the rain or non-rain cases. The developed algorithm applied to heavy rain cases during typhoons and showed critically improved results.

Diversity of Benthic Macroinvertebrate Community in Sohan Stream in Ecological Landscape Conservation Area (생태·경관보전지역인 소한계곡의 저서성대형무척추동물 다양성 분석)

  • Ham, Seong-nam;Kim, Sun-yu;Joo, Jaehyung;Jang, Seuk Gu;Kim, Dongsam;Bae, Mi-Jung
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.374-383
    • /
    • 2021
  • In 2020, the diversity of benthic macroinvertebrate communities was investigated in the Sohan stream, an ecological and landscape conservation area, and the results were compared with the previous research conducted in 2011. In total, 42 species (two phyla, three classes, and seven orders) were found in the Sohan stream. Species richness and abundance sharply decreased at all sampling sites because of Typhoons Haishen and Maysak in 2020, which had a direct impact on the stream. In the functional feeding group, the ratio of collector-gatherers was the highest at all sampling sites. However, during the autumn season, the shredder ratio increased from 13.4% to 42.4% in the uppermost stream site. Compared with the diversity of benthic macroinvertebrates surveyed in 2011, a total of 53 species (two phyla, three classes, and eight orders) were found. The percentage of species richness and abundance of Ephemeroptera, Plecoptera, and Trichoptera was more than 50% both in 2011 and 2020. Only the richness of Ephemeroptera was significantly different between them (2011: 2.9 and 2020: 6.7). In this study, the abrupt changes of species richness and abundance in benthic macroinvertebrate were not observed before and after the designation of an ecological and landscape conservation area. However, it is necessary to monitor benthic macroinvertebrates in order to confirm that biodiversity is continuously maintained long after the designation of the ecological and landscape conservation area.

The study of heavy rain warning in Gangwon State using threshold rainfall (침수유발 강우량을 이용한 강원특별자치도 호우특보 기준에 관한 연구)

  • Lee, Hyeonjia;Kang, Donghob;Lee, Iksangc;Kim, Byungsikd
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.751-764
    • /
    • 2023
  • Gangwon State is centered on the Taebaek Mountains with very different climate characteristics depending on the region, and localized heavy rainfall is a frequent occurrence. Heavy rain disasters have a short duration and high spatial and temporal variability, causing many casualties and property damage. In the last 10 years (2012~2021), the number of heavy rain disasters in Gangwon State was 28, with an average cost of 45.6 billion won. To reduce heavy rain disasters, it is necessary to establish a disaster management plan at the local level. In particular, the current criteria for heavy rain warnings are uniform and do not consider local characteristics. Therefore, this study aims to propose a heavy rainfall warning criteria that considers the threshold rainfall for the advisory areas located in Gangwon State. As a result of analyzing the representative value of threshold rainfall by advisory area, the Mean value was similar to the criteria for issuing a heavy rain warning, and it was selected as the criteria for a heavy rain warning in this study. The rainfall events of Typhoon Mitag in 2019, Typhoons Maysak and Haishen in 2020, and Typhoon Khanun in 2023 were applied as rainfall events to review the criteria for heavy rainfall warnings, as a result of Hit Rate accuracy verification, this study reflects the actual warning well with 72% in Gangneung Plain and 98% in Wonju. The criteria for heavy rain warnings in this study are the same as the crisis warning stages (Attention, Caution, Alert, and Danger), which are considered to be possible for preemptive rain disaster response. The results of this study are expected to complement the uniform decision-making system for responding to heavy rain disasters in the future and can be used as a basis for heavy rain warnings that consider disaster risk by region.