• Title/Summary/Keyword: Typhoons

Search Result 551, Processing Time 0.023 seconds

Analysis of Water Temperature Variations in Coastal Waters of the Korean Peninsula during Typhoon Movement (태풍 이동시 한반도 해역별 수온 변동 분석)

  • Juyeon Kim;Seokhyun Youn;Myunghee Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • In this study, we analyzed the water temperature variability in the sea area of the Korean Peninsula in August, before and after the typhoon inflow through Typhoon Soulik, the 19th in 2018 that turned right around the Korean Peninsula and passed through the East Sea, and Typhoon Bavi, the eighth in 2020 that advanced north and passed through the Yellow Sea. The data used in this study included the water temperature data recorded in the real-time information system for aquaculture environment provided by the National Institute of Fisheries Science, wind data near the water as recorded by the automatic weather system, and water temperature data provided by the NOAA/AVHRR satellite. According to the analysis, when typhoons with different movement paths passed through the Korean Peninsula, the water temperature in the East Sea repeatedly upwelled (northern winds) and downwelled (southern winds) depending on the wind speed and direction. In particular, when Typhoon Soulik passed through the East sea, the water temperature dropped sharply by around 10 ℃. When Typhoon Bavi passed through the center of the Yellow Sea, the water temperature rose in certain observed areas of the Yellow Sea and even in certain areas of the South Sea. Warmer water flowed into cold water regions owing to the movement of Typhoon Bavi, causing water temperature to rise. The water temperature appeared to have recovered to normal. By understanding the water temperature variability in the sea area of the Korean Peninsula caused by typhoons, this research is expected to minimize the negative effects of abnormal climate on aquaculture organisms and contribute to the formulation of damage response strategies for fisheries disasters in sea areas.

Development of Inquiry Activity Materials for Visualizing Typhoon Track using GK-2A Satellite Images (천리안 위성 2A호 영상을 활용한 태풍 경로 시각화 탐구활동 수업자료 개발)

  • Chae-Young Lim;Kyung-Ae Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.48-71
    • /
    • 2024
  • Typhoons are representative oceanic and atmospheric phenomena that cause interactions within the Earth's system with diverse influences. In recent decades, the typhoons have tended to strengthen due to rapidly changing climate. The 2022 revised science curriculum emphasizes the importance of teaching-learning activities using advanced science and technology to cultivate digital literacy as a citizen of the future society. Therefore, it is necessary to solve the temporal and spatial limitations of textbook illustrations and to develop effective instructional materials using global-scale big data covered in the field of earth science. In this study, according to the procedure of the PDIE (Preparation, Development, Implementation, Evaluation) model, the inquiry activity data was developed to visualize the track of the typhoon using the image data of GK-2A. In the preparatory stage, the 2015 and 2022 revised curriculum and the contents of the inquiry activities of the current textbooks were analyzed. In the development stage, inquiry activities were organized into a series of processes that can collect, process, visualize, and analyze observational data, and a GUI (Graphic User Interface)-based visualization program that can derive results with a simple operation was created. In the implementation and evaluation stage, classes were conducted with students, and classes using code and GUI programs were conducted respectively to compare the characteristics of each activity and confirm its applicability in the school field. The class materials presented in this study enable exploratory activities using actual observation data without professional programming knowledge which is expected to contribute to students' understanding and digital literacy in the field of earth science.

A Study on the Optimal Angle Setting Considering the Stability of Photovoltaic Systems (태양광발전시스템의 안정성을 고려한 최적 각도 설정에 관한 연구)

  • Lee, Yeo-Jin;Han, Se-Kyung;Kim, Sung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.498-504
    • /
    • 2018
  • The conventional photovoltaic(PV) systems are designed the installation angle for maximizing power output by considering a geographical characteristics, weather and climate conditions such as the solar radiation and atmosphere temperature. However, the PV generators must be designed to deal with the extreme situations like typhoons, earthquakes because PV systems are exposed to the ambient conditions and external shock due to condition of PV location. Especially, the wind has relatively higher influence on the design of PV systems, in this paper we proposed the method of determining the optimal nominal dimension of the facilities, which can withstand the maximum wind pressure. By using the proposed method, we determined the optimal installation angle for the aspect stability of PV facilities and amount of power output. Moreover, we analyzed the monthly amount of power for each installation angle of PV systems, and proposed the changing strategy of installation angle by determining the optimal angle to produce maximum power for each period.

Characteristics of wind-Induced Coupled Motion of Tapered and Setback Tall Buildings (비정형 초고층 건물의 바람에 의한 편심응답 특성)

  • Kim, Yong-Chul;Kanda, Jun;Tamura, Yukio
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.79-86
    • /
    • 2013
  • For most of recent tall buildings, one characteristic is that their building shapes vary with height such as taper and setback, and this implies that the distribution of their structural components may also vary with height. Because of these structural variations, although the sectional shapes of these buildings are symmetric, it is difficult to say whether or not they are structurally symmetric. The acceleration responses of structurally asymmetric tall buildings are larger than those of non-eccentric buildings, thus raising the possibility of problems during strong winds and typhoons. This paper describes wind tunnel tests carried out using building models with height variations and acceleration response analyses, and discusses the resulting response characteristics. For tapered and setback buildings, although the across-wind accelerations are larger than those of a square building, the total root-mean-square accelerations remain small because of smaller along-wind and torsional rms accelerations. And it was found that the effects of statistical couplings between along-wind force and other two forces are negligible.

Temporal and Spatial Dynamics of an Epilithic Algal Community in the Hantan River (한탄강의 돌 부착조류 군집의 시, 공간 동태)

  • KimYongJae
    • ALGAE
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • This study investigated the temporal and spatial dynamics of an epilithic algal community in the Hantan River in November 2001, February, May and August 2002. It was identified a total of an epiphlithic 301 taxa which were composed of 275 species, 16 varieties and 10 unidentified species. The standing crops ranged between 598,600-16,525,200 cells $\cdot$ $cm^2$ and showed the temporal and spatial variations, A higher value was found at the lower station than the upper station in winter, but a higher value was found at the upper station than the lower station in summer due to the effects of typhoons. Chlorophyll concentrations ranged between 13.4-304.2 ${\mu}g$ $\cdot$ $cm^2$. Standing crops and chlorophyll showed similar trends in autumn and winter, but temporal dynamics were not apparent in the overgrowth of Lyngbya, Schizothrix and so others in Cyanophyceae in spring and summer. They were composed of species in Chlorophyceae-Bascillariophyceae-Cyanophyceae and no seasonal effect was detected. Low diversity index values probably indicated the effects of environmental stresses (water temperature, flow and current velocity) other than organic pollution. An assessment of organic pollution using epilithic diatoms (DAIpo) showed $\alpha$-oligosaprobic states at the upper- and mid- stations, and $\alpha$-mesosaprobic states at the lower- stations.

A Study on the Optimum Particle Size Distribution of the Drainable Base in Mountain Road for the Prevention of the Pavement Damage by Uplift Seepage Pressure (산지도로의 상향침투수압으로 인한 포장파손 방지 배수성 기층재료의 적정입도 연구)

  • Lim, Young-Kyu;Kim, Young-Kyu;Yune, Chan-Young;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.21-29
    • /
    • 2011
  • Recently, typhoons or heavy rainfalls frequently occurred because of the effect of global warming, which caused serious damage such as landslide of mountain road, debris flow and uplift seepage pressure. Uplift seepage pressure induced on the pavement of mountain roads may cause serious pavement damage. It was known that subsurface drainage method is very effective to reduce uplift seepage pressure. Suitable permeability and stiffness of drainable base is very important to have the effectiveness of subsurface drainage. In this study, optimum particle size distribution of drainable base is investigate to meet the required permeability and bearing capacity of drainable base.

The Study on Analyzing Overflow in River (MIKE FLOOD를 이용한 하천 범람 해석에 관한 연구)

  • Choi, Gye-Woon;Byeon, Seong-June;Chung, Youn-Joong;Kim, Young-Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1236-1240
    • /
    • 2006
  • Flooding is an inevitable problem for many cities. The study has depended on a combined approach of physically based modeling and GIS. The stream network is structured by MIKE11 for basis of a network and extended by MIKE21 to make like 2D analysis. This method is called alternative 2D analysis. In this study, one of area in Korea is used to analyze overflow of stream. Flood risk of the area looks like not so big because an elevation of this area is very high and slope is steep, but it is very dangerous area due to the typhoons. The tools to make flood risk map are MIKE11 and MIKE21 include GIS program. And map is expressed 3-D animation with MIKE Animator. As a result of this work, the flood risk map is made. And everyone who is not an expert can check dangerous area for flooding. At present, the method which is viable and easily confirmable must be promote because one of matters of common interest, which is of the general public, is the flood disaster.

  • PDF

A Study on Embankment Slope Management System (성토사면유지관리시스템 개발에 관한 연구)

  • Kim, Seung-Hyun;Kim, Hong-Gyun;Lee, Jung-Yup;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.749-758
    • /
    • 2010
  • Embankment Slope (or Fill Slope) is defined as artificial slope formed by the filling of soil or rocks on the original ground. Recently a lot of embankment failures and collapse has occurred due to the increase of torrential rainfall and typhoons. Embankment collapse has lead to a great loss of lives and property therefore there is a need to establish a systematic embankment slope management system that will handle the maintenance and repair of risky embankment slopes. The objective of this study is to establish an "Embankment Slope Management Method" for embankment slopes located along national highways all over Korea. The method for field investigation of embankment slopes was recommended and the system for investment priority determination was also developed. The factors that lead to the collapse of embankment slopes caused by natural calamities were also determined through the initial survey of embankment slopes located along river fronts and mountainous areas.

  • PDF

Estimation of Topographic Factor of Wind Speed Using Geographic Information (지리정보를 이용한 풍속지형계수 산정)

  • Seong, Min-Ho;Park, Kyung-Sik;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.13-22
    • /
    • 2010
  • Due to the frequent gales and typhoons by anomaly climates and its subsequent loss of life and property, the importance of the research estimating wind load is being emphasized when structure is designed. It is necessary to measure geographical information exactly to estimate topographic factor of wind speed because the increase of topographic factor of wind speed means the increase of wind velocity and the increase of wind velocity has an influence on wind load proportionate to a square. Therefore, the accurate and reasonable estimation method of topographic factor of wind speed is presented in this study using ArchiCAD, an architectural BIM(Building Information Modeling) software. When the structure subjected to wind load is designed, reasonability and economic performance of design will be more improved by using the proposed method.

Evaluation of the Intensity Predictability of the Numerical Models for Typhoons in 2013 (2013년 태풍에 대한 수치모델들의 강도 예측성 평가)

  • Kim, Ji-Seon;Lee, Woojeong;Kang, KiRyong;Byun, Kun-Young;Kim, Jiyoung;Yun, Won-Tae
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.419-432
    • /
    • 2014
  • An assessment of typhoon intensity predictability of numerical models was conducted to develop the typhoon intensity forecast guidance comparing with the RSMC-Tokyo best track data. Root mean square error, box plot analysis and time series of wind speed comparison were performed to evaluate the each model error level. One of noticeable fact is that all models have a trend of error increase as typhoon becomes stronger and the Global Forecast System showed the best performance among the models. In the detailed analysis in two typhoon cases [Danas (1324) and Haiyan (1330)], GFS showed good performance in maximum wind speed and intensity trend in the best track, however it could not simulate well the rapid intensity increasing period. On the other hand, ECMWF and Hurricane-WRF overestimated the typhoon intensity but simulated track trend well.