• Title/Summary/Keyword: Typhoons

Search Result 549, Processing Time 0.027 seconds

A Study on Typhoon-Disasers in the Korean Peninsula (한반도의 태풍피해에 관한 연구)

  • 유희정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.4
    • /
    • pp.61-68
    • /
    • 1983
  • In order to study the disaster of typhoons which hit the Korean peninsula a period of 22 years from 1959 through 1980 was covered to collect necessary data with respect to attack of typhoons and their damage. Centering around the Korean peninsula, typhoons which attacked between 1959 and 1980 were grouped according to their treking routes and damage for detailed analyses. The results are summarized as follows: 1. The average annual damage of typhoons in the Korean peninsula was found to be 1.27 from June to September. The monthly distributions were found to be 53.6% in August, 28.6% in September and 14.2% in July. 2. About an half (56.4%) of the typhoons which hit the Korean peninsula passed through the western coast and 27.3% through the southern and 14.6% through the eastern. Typhoons of the we8tern coast were divided by their treking routes as 25.5% in CWE type (Jul., Aug., Sep.), 14.6% in WE type (Jul., Aug.), 16.3% in W type (Jul.). 3. The minimum SLP averaged 976.6mb and ordere:l by the treking routes as E$_1$$_1$ and CWE types are higher 20mb than S, E or WE types. 4. The Korean peninsula was damaged by all number of the typhoons in WE or S type, by a third at number of its in E or WE and WI type. 5. The annual probabilities of typhoon-disasters were 0.773 for once or more, 0. 409 for twice or more, and 0.091 for three times or more. Hearvy damage experienced in the Korean peninsula are found to have an annual. 6. Amount of the damage by the treking routes in ordered S>WE>CWE>E>W$_1$, and heavy storms experienced in the Xorean peninsula are found to have accompanied the WE and S types during the months of August and September. 7. The average annual damages were found to be 110 at the death-tall, 45, 000 at the sufferers and 10.5 billion at the property damage. 8. Seventy-sex percent of the all damage in the Korean peninsula distributed on the district from the 36th Parallel south and included Chie Ju island.

  • PDF

Typhoon Type Index for Analysis of Typhoons Affecting the Korean Peninsula (한반도 영향태풍 분석을 위한 태풍유형지수 활용 및 사례분석)

  • Kim, Gunwoo;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.30 no.7
    • /
    • pp.557-571
    • /
    • 2021
  • This study aimed to classify typhoons using a more objective index based on strong winds and precipitation data from 1904 to 2019 obtained from the Automated Surface Observing System. The Typhoon Type Index (TTI) was calculated by classifying wind speed and precipitation of each typhoon, thereby revealing the rate and characteristics of the wind-type and rain-type typhoons. In addition, the top 10 typhoons for property damage were analyzed by dividing them into three types according to the typhoon course. The analysis showed that typhoons of type 1, heading north to the west coast, were most clearly affected by the wind. In addition, the impact of the wind was reduced and the impact of rain increased in the order of typhoon type 2 that landed on the southern coast and type 6 that affected the Korean Peninsula through China.

An Analysis of the Impact of National Fishing Port Investment on Fisheries Disaster Damage by Typhoons (국가어항 투자가 태풍으로 인한 수산재해피해에 미치는 영향 분석)

  • Kim, Eun-Ji;Bae, Hyeon-Jeong
    • The Journal of Fisheries Business Administration
    • /
    • v.53 no.1
    • /
    • pp.73-84
    • /
    • 2022
  • The purpose of this study is the impact of national fishing port investment and typhoons on fisheries disaster damage. The dependent variables were the amount of damage to fishing ports, fishing boats, fisheries enhancement, external facilities, mooring facilities, functional facilities, fishing port and typhoons. The analysis period is from 2002 to 2018. Since the error term is in a simultaneous correlation, it was efficiently estimated by analyzing it with a seemingly unrelated regression (SUR) method. As a result of the analysis, external facilities have not significance to all models. Investing in mooring facilities increased the amount of damage to fishing ports for five years. Investing in functional facilities reduced the amount of damage to fishing ports and aquaculture over five years. Typhoons have significance to all models, and the amount of damage increased every time a typhoon occurred. Based on these results, as the influence of typhoons increases, it seems necessary to establish preventive measures. Timely investment and maintenance to enable the role and function of national fishing ports are considered important.

A Height Simulation on Storm Surges in Jeju Island (제주도 연안해역의 폭풍해일고 산정)

  • Yang, Sung-Kee;Kim, Sang-Bong
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.459-472
    • /
    • 2014
  • Storm surge height in the coastal area of Jeju Island was examined using the Princeton Ocean Model(POM) with a sigma coordinate system. Amongst the typhoons that had affected to Jeju Island for six years(1987 to 2003), the eight typhoons(Maemi, Rusa, Prapiroon, Olga, Yanni, Janis, Gladys and Thelma) were found to bring relatively huge damage. The storm surge height of these typhoons simulated in Jeju harbour and Seogwipo harbour corresponded relatively well with the observed value. The occurrence time of the storm surge height was different, but mostly, it was a little later than the observed time. Jeju harbour showed a higher storm surge height than Seogwipo harbour, and the storm surge height didn't exceed 1m in both of Jeju harbour and Seogwipo harbour. Maemi out of the eight typhoons showed the maximum storm surge height(77.97 cm) in Jeju harbour, and Janis showed the lowest storm surge height(5.3 cm) in Seogwipo harbour.

Sea Surface Cooling in the East Sea with the Passage of Typhoons (태풍통과시 동해에서의 해수면 냉각현상)

  • HONG Chul-Hoon;SOHN Ik-Sung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.2
    • /
    • pp.137-147
    • /
    • 2004
  • Sea surface cooling (SSC) with the passage of typhoons is examined in the East Sea using the Japan Meteorological Agency buoy data $(37^{\circ}45'N,\;134^{\circ}23'E)$ during 1983-2000 and a three-dimensional primitive equation model (the Princeton Ocean Model). Forty typhoons in this period induced the SST decrease ranging from about $-0.5^{\circ}C\;to\;-4.3^{\circ}C.$ Intense SSC $(<-2^{\circ}C)$ occurs with typhoons that passed mainly through the left-hand side of the buoy station. The model is implemented to examine a physical process of SSC with a typical-track typhoon in the northwestern Pacific $(24^{\circ}N\;to\;52^{\circ}N).$ The model well reproduces prominent features in the observation and addresses how it happens; SSC is induced mainly by momentum mixing effect stirred with the typhoon rather than upwelling.

Integrating extreme weather systems induced from typhoons and monsoon in nonstationary frequency analysis

  • Lee, Taesam;So, Chanyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.15-15
    • /
    • 2016
  • In South Korea, annual maximum precipitation often occurs in association with mature typhoons in the western Pacific and from summer monsoon rains. In addition, certain years have no significant typhoon activity. Therefore, the characteristics of frequency distributions differ between extreme typhoons and monsoon events. Those extremes are also influenced from climate conditions in a different way. Application of nonstationary frequency analysis to the AMP data combined with typhoon and monsoon events might not always be reasonable. Therefore, we propose a novel approach of nonstationary frequency analysis to integrate extreme events of AMP induced from two main sources such as typhoons and monsoon in the current study. In this way, we were able to model the nonstationarity of extreme events from tropical storms and monsoon separately.

  • PDF

Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons

  • Ye, X.W.;Xi, P.S.;Su, Y.H.;Chen, B.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.809-824
    • /
    • 2017
  • The accurate evaluation of wind characteristics and wind-induced structural responses during a typhoon is of significant importance for bridge design and safety assessment. This paper presents an expectation maximization (EM) algorithm-based angular-linear approach for probabilistic modeling of field-measured wind characteristics. The proposed method has been applied to model the wind speed and direction data during typhoons recorded by the structural health monitoring (SHM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. In the summer of 2015, three typhoons, i.e., Typhoon Chan-hom, Typhoon Soudelor and Typhoon Goni, made landfall in the east of China and then struck the Jiubao Bridge. By analyzing the wind monitoring data such as the wind speed and direction measured by three anemometers during typhoons, the wind characteristics during typhoons are derived, including the average wind speed and direction, turbulence intensity, gust factor, turbulence integral scale, and power spectral density (PSD). An EM algorithm-based angular-linear modeling approach is proposed for modeling the joint distribution of the wind speed and direction. For the marginal distribution of the wind speed, the finite mixture of two-parameter Weibull distribution is employed, and the finite mixture of von Mises distribution is used to represent the wind direction. The parameters of each distribution model are estimated by use of the EM algorithm, and the optimal model is determined by the values of $R^2$ statistic and the Akaike's information criterion (AIC). The results indicate that the stochastic properties of the wind field around the bridge site during typhoons are effectively characterized by the proposed EM algorithm-based angular-linear modeling approach. The formulated joint distribution of the wind speed and direction can serve as a solid foundation for the purpose of accurately evaluating the typhoon-induced fatigue damage of long-span bridges.

A Case Study on Typhoon-Midlatitude Synoptic System Interaction: Typhoons Rusa(0215) and Maemi(0314) (태풍-중위도 종관 시스템 상호작용 연구: 루사(0215), 매미(0314) 사례분석)

  • Choi, Ki-Seon;Kim, Baek-Jo;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1051-1061
    • /
    • 2007
  • The impact of midlatitude synoptic system (upper-level trough) on typhoon intensity change was investigated by analyzing the spatial and temporal characteristics of vertical wind shear (VWS), relative eddy momentum flux convergence (REFC), and potential vorticity (PV). These variables were computed over the radial mean $300{\sim}1,000km$ from the typhoon center by using GDAPS (Global Data Assimilation and Prediction System) data provided by the Korea Meteorological Administration (KMA). The selected cases in this study are typhoons Rusa (0215) and Maemi (0314), causing much damage in life and property in Korea. Results show that the threshold value of VWS indicating typhoon intensity change (typhoon to severe tropical storm) is approximately 15 m/s and of REFC ranges 6 to 6.5 $ms^{-1}day^{-1}$ in both cases, respectively. During the period with the intensity of typhoon class, PVs with 3 to 3.5 PVU are present in 360K surface-PV field in the cases. In addition, there is a time-lag of 24 hours between central pressure of typhoon and minimum value of VWS, meaning that the midlatitude upper-level trough interacts with the edge of typhoon with a horizontal distance less than 2,000 km between trough and typhoon. That is, strong midlatitude upper-level divergence above the edge of the typhoon provides a good condition for strengthening the vertical circulation associated with the typhoons. In particular, when the distance between typhoon and midlatitude upper-level trough is less than 1,000 km, the typhoons tend to weaken to STS (Severe Tropical Storm). It might be mentioned that midlatitude synoptic system affects the intensity change of typhoons Rusa (0215) and Maemi (0314) while they moves northward. Thus, these variables are useful for diagnosing the intensity change of typhoon approaching to the Korean peninsula.

Trend Analyses of Intensity and Duration of Typhoons That Influenced the Korean Peninsula during Past 60 Years (과거 60년 간 한반도에 영향을 미친 태풍의 강도 및 지속기간의 경향 분석)

  • Oh, Ji Hee;Suh, Kyung-Duck;Kim, Young-Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.121-128
    • /
    • 2011
  • The paper presents trend analyses of the past 60-year-data of intensity (central pressure) and duration of the typhoons that influenced the Korean Peninsula. The singular spectrum analysis was employed to extract the trends. The result of linear regression of the trend component shows that the intensity of typhoons is slightly increased. A long-term change with period of about 30 years was detected, and thus the original series were separated into two sub-periods of 30 years. For these sub-periods, normal and Gumbel distributions of central pressure and duration of typhoons were estimated. The results show that during the second sub-period the overall intensity of typhoon was increased but the occurrence of extreme typhoons remains unchanged. The duration also showed an obvious increase during the second sub-period.

Effect of Typhoons on Contaminants Released from the Southern Sea around Fukushima of Japan (일본 후쿠시마 근해에서 방출된 오염물질에 미치는 태풍의 영향)

  • Hong, Chul-Hoon;Kim, Jinpyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.234-240
    • /
    • 2016
  • We examined the diffusion of contaminants released from the southern coast around Fukushima, Japan, during the passage of typhoons using a three-dimensional numerical model (POM) to track diffusing radioactivity (RA) released from the nuclear power plant at Fukushima following the accident caused by the giant tsunami event in March 2011. Radioactive contaminants released during the passage of typhoons may have significantly affected not only Japanese but also Korean coastal waters. The model domain covered most of the northwestern Pacific including marginal seas such as the East/Japan Sea and the Yellow Sea. Several numerical experiments were conducted case studies focusing on the westward diffusion from the southern coast of Japan of contaminants derived from the source site (Fukushima) according to various attributes of the typhoons, such as intensity, track, etc. The model produced the following results 1) significant amounts of contaminants were transported in a westward direction by easterly winds favorable for generating a coastal air stream along the southern Japanese coast, 2) the contaminants reached as far as Osaka Bay with the passage of typhoons, forced by a 5-day positive sinusoidal form with a (right-) northward track east of Fukushima, and 3) the range of contamination was significant, extending to the interior of the East/Japan Sea around the Tsugaru Strait. The model suggests that contaminants and/or radioactivity released from Fukushima with the passage of typhoons can affect Korean waters including the northeastern East/Japan Sea around the Tsugaru Strait, especially when the typhoon tracks are favorable for generating a westward coastal air stream along the southern Japanese coast.