• Title/Summary/Keyword: Typhoon Waves

Search Result 84, Processing Time 0.025 seconds

Analysis of Characteristics for 2016 Changma Rainfall (2016년 한반도 장마 강수 특성 분석)

  • Kim, Jin-Yong;Seo, Kyong-Hwan;Yeh, Sang-Wook;Kim, Hyun-Kyung;Yim, So-Young;Lee, Hyun-Soo;Kown, MinHo;Ham, Yoo-Geun
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.277-290
    • /
    • 2017
  • Characteristics of precipitation in South Korea during the 2016 Changma period (6/18~7/30) are analyzed in great details. El $Ni{\tilde{n}}o$-induced tropical Indian Ocean (IO) basin-wide warming lasts from spring to early summer and induces the western North Pacific subtropical high (WNPSH) circulation anomaly through an equatorial Kelvin wave during the 2016 Changma period. Along the northern edge of the WNPSH, strong precipitation occurred, in particular, over eastern China and southern Japan. During the Changma period, South Korea had the near-normal mean precipitation amount (~332 mm). However, about 226 mm of rain fell in South Korea during 1 July to 6 July, which amounts to 67% of total Changma precipitation in that year. Upper-level synoptic migratory lows and low-level moisture transport played an essential role, especially from 1 July to 3 July, in triggering an abrupt development of fronts over the Korean Peninsula and the eastern continent China. The front over the eastern China migrates progressively eastward, which results in heavy rainfall over the Korean peninsula from 1 to 3 July. In contrast, from 4 to 6 July, the typhoon (NEPARTAK) affected an abrupt northward advance of the North Pacific subtropical high (NPSH). The northward extension of the NPSH strengthens the Changma front and induces the southerly flows toward the Korean peninsula, giving rise to an increase in heavy rainfall. The NEPARTAK is generated due to interaction of the Madden-Julian Oscillation (MJO), equatorial Rossby wave and Kelvin waves.

Geophysical Study Through Infrasound Observation (인프라사운드 관측을 통한 지구물리학적 연구)

  • Che, Il-Young;Jeon, Jeong-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.495-505
    • /
    • 2006
  • Atmospheric infrasound is defined as low frequency inaudible sound waves generated from natural phenomena and human activities. One property of long-distance travelling of infrasound makes it possible to detect the wave propagated from remote sound sources and to understand many geophysical phenomena generating it. Recently, advanced global infrasound sensor arrays are being deployed to monitor the clandestine nuclear test and to study geophysical phenomena in the world. In Korea, five seismo-acoustic arrays consisting of co-located seismometer and micro-barometer have been operated to discriminate the artificial explosions from the natural earthquakes in and around the Korean Peninsula. In addition to the discrimination purpose, these ways also record distinct infrasonic signals from natural phenomena on global scale such as large earthquake, bolide event, volcanic explosion, typhoon, and so on. As a new frontier in monitoring the earth, infrasound is being applied to understand various phenomena in and above the earth's surface.

Strain-dependent dynamic properties of cemented Busan clay (부산 고결점토의 변형률 의존적 동적거동특성에 관한 연구)

  • Kim, Ah-Ram;Chang, Il-Han;Cho, Gye-Chun;Shim, Sung-Hyun;Kang, Yeoun-Ike
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.61-67
    • /
    • 2010
  • Thick soft clay deposits which are generally located at the west and south coast of the Korean peninsula have complicated characteristics according to their orientation and formation history. Thus, several geotechnical problems could possibly occur when those soft clay deposits are used as foundations for marine structures. Deep cement mixing (DCM) method is one of the most widely used soft soil improvement method for various marine structures, nowadays. DCM method injects binders such as cement into the soft ground directly and mixes with the in-situ soil to improve the strength and other geotechnical properties sufficiently. However, the natural impacts induced by dynamic motions such as ocean waves, wind, typhoon, and tusnami give significant influences on the stability of marine structures and their underlaying foundations. Thus, the dynamic properties become important design criteria to insure the seismic stability of marine structures. In this study, the dynamic behavior of cemented Busan clay is evaluated. Laboratory unconfined compression test and resonant column test are performed on natural in-situ soil and cement mixed specimens to confirm the strength and strain-dependent dynamic behavior variation induced by cement mixing treatment. Results show that the unconfined compressive strength and shear modulus increase with curing time and cement content increment. Finally, the optimized cement mixing ratio for sufficient dynamic stability is obtained through this study. The results of this study are expected to be widely used to improve the reliability of seismic design for marine structures.

  • PDF

Geomorphic development and distributional system of marine terrace in the eastern part of Seopo-myeon, Sacheon-si, Gyeongnam Province (경남 사천시 서포면 동쪽 해안단구 지형 발달과 분포 체계)

  • Yoon, Soon-Ock;Kang, Bong;Park, Chung-Sun;Hwang, Sangill
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.4
    • /
    • pp.875-886
    • /
    • 2016
  • The eastern coast of Seopo-myeon, Sancheon-si in the South Coast is a bay almost completely separated from open sea by Changseon and Namhae Islands. Marine terraces in this area can be classified into geomorphic surfaces with elevations of 10~12m, 15~18m, 20~24m, 25~28m, 30~33m, 35~38m, 40~45m, 45~50m and 54m. This marine terrace system is similar to the Boryeong area in the West Coast. The geomorphic surfaces distribute along ridges and show relatively small areas. The young and old surfaces show a mixed distributional pattern. This distributional pattern contrasts to the East Coast where the oldest surface farthest from the coastline is parallel to the coast and age of the surfaces increases with a distance from the coast. These seem to result in high energy waves by typhoon that developed wave-cut platform on hill areas with relatively complex relief in a short time.

  • PDF

Seasonal Changes of Tidal-flat Sediments: Kwangyang Bay, South Coast of Korea (조간대 퇴적물의 계절적 변화 : 한국 남해안의 광양만)

  • 류상옥;김주용;이희준;조영길;안성모
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.349-356
    • /
    • 2003
  • A continuous monitoring of sedimentation rate and textural characteristics of surface sediments was carried out on the tidal flats in Kwangyang Bay, middle South Sea for two years on an every-two-monthly basis. This study shows that during the winter the tidal flats receive a thin surface layer of which texture becomes finer. In summer, the surface sediments were subject to rather abrupt erosion by occational typhoons and heavy rainfall resulting in a coarse-silt dominated texture. Due to nearly closed geomorphology of Kwangyang Bay, local waves created in the bay during winter are much subdued, in contrast to the rough wave climate and associated sedimentary cycle for open-type tidal flats in the Yellow Sea. In addition, unexpected artificial effects on the tidal-flat sedimentation by construction of a huge industrial complex along the shoreline of the bay are observed from a nearby tidal flat. Here, the sediments were consistently eroded without any sign of natural seasonal variations.

Current Status and Future Direction of the NIMS/KMA Argo Program (국립기상과학원 Argo 사업의 현황 및 추진 방향)

  • Baek-Jo Kim;Hyeong-Jun Jo;KiRyong Kang;Chul-Kyu Lee
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.561-570
    • /
    • 2023
  • In order to improve the predictability of marine high-impacts weather such as typhoon and high waves, the marine observation network is an essential because it could be rapidly changed by strong air-sea interaction. In this regard, the National Institute of Meteorological Sciences, Korea Meteorological Administration (NIMS/KMA) has promoted the Argo float observation program since 2001 to participate in the International Argo program. In this study, current status and future direction of the NIMS/KMA Argo program are presented through the internal meeting and external expert forum. To date, a total of 264 Argo floats have been deployed into the offshore around the Korean Peninsula and the Northwestern Pacific Ocean. The real-time and delayed modes quality control (QC) system of Argo data was developed, and an official regional data assembling center (call-sign 'KM') was run. In 2002, the Argo homepage was established for the systematic management and dissemination of Argo data for domestic and international users. The future goal of the NIMS/KMA Argo program is to improve response to the marine high-impacts weather through a marine environment monitoring and observing system. The promotion strategy for this is divided into four areas: strengthening policy communication, developing observation strategies, promoting utilization research, and activating international cooperation.

Development of a Dynamic Deformable Rubber Membrane Parapet to Cope with the Long Term Sea Level Rise and the Abnormal Waves (장기해수면 상승 및 이상파랑에 대비한 동적 가변형 고무막체 파라펫 개발)

  • Kim, Sun-Sin;Chun, In-Sik;Lee, Young-Gun;Ko, Jang-Hee;Hong, Seung-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.34-42
    • /
    • 2011
  • It's been reported that the global warming effect has invoked the ever increasing typhoon intensity and long-term sea level rise which jointly cause severe wave overtopping over breakwaters or shore dykes. A simple measure to cope with this undesirable change may be just to increase the crest height of the dykes and breakwaters. This is surely effective to prevent wave overtopping, but it also decreases the seaward visibility of coastal waterfront. In this paper, a dynamic deformable rubber membrane parapet which not only reduces wave overtopping in storm period but also secures seascapes in normal days is presented. Several optimal configurations of the parapet are proposed. Through numerical analyses using a nonlinear finite element model and hydraulic experiments, the air controlled expansion and contraction of the parapets, their behavior against wave overtopping and structural stability are investigated.

Estimation of Erosion Damage of Armor Units of Rubble Mound Breakwaters Attacked by Typhoons (태풍에 의한 경사식 방파제의 피복재 침식 피해 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.295-305
    • /
    • 2010
  • Although the rubble mound breakwaters in Korea have been damaged by typhoons almost every year, quantification of erosion of armor block have seldomly been made. In this paper, the damage of armor units is standardized by the relative damage. In the case where the number of damaged units is reported, it is divided by the total number of units to calculate the relative damage. In the case where the rehabilitation cost is reported, the relative damage is calculated by using its relationship with the present value of the past rehabilitation cost. The relative damage is shown to have strong correlations with the typhoon parameters such as nearest central air pressure and maximum wind speed at each site. On the other hand, the existing numerical methods for calculating the cumulative damage are compared with hydraulic model tests. The method of Melby and Kobayashi (1998) is shown to give a reasonable result, and it is used to calculate the relative damage, which is compared with the measured damage. A good agreement is shown for the East Breakwater of Yeosu Harbor, while poor agreement is shown for other breakwaters. The poor agreement may be because waves of larger height than the design height occurred due to strong typhoons associated with climate change so that the relative damage increased during the last several decades.

Behavior of a Moveable Barrier on Revetment for Mitigation of Disaster by Wave Overtopping (월파방지를 위한 호안설치형 가동식 방벽의 거동 분석)

  • Seo, Jihye;Lee, Byung-Wook;Park, Woo-Sun;Won, Deokhee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.1
    • /
    • pp.10-18
    • /
    • 2018
  • Recently, a port city has been gradually expanding near coastal area, and many facilities for tourism and waterfront have been constructed near the shore. When storm surge developed by typhoon have occurred, coastal facilities have a lot of damage and failure with loss of life caused directly by the waves. Various barriers have been suggested to protect property and human life from disasters, they have not been widely applied though. Because they do not satisfy the recent trends that emphasize the surrounding scenery. In this study, a moveable barrier on revetment is proposed against wave overtopping. This moveable barrier has two function, sightseeing and protecting. In case of usual day, it is installed on the revetment and used observatory deck for sightseeing. When wave overtopping has occurred by storm surge, it protect coastal area through changing of flat deck to triangular barrier. The hydraulic and the structural performance of the newly proposed movable barrier was investigated through numerical analysis using commercial program. As a results, this structure has numerically good performance, and follow-up research is required through experimental tests though.

A Study on the Evaluation of Cargo Securing Safety for Car ferry Ships Using Wave Height Information (해상 파고 정보를 활용한 카페리 선박의 고박안전성 평가에 관한 연구)

  • Yu, Yong-Ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.457-464
    • /
    • 2021
  • Cargo securing safety, which is one factor for the safe operation of car ferry ships, has been applied since 2015 and evaluated by comparing the hull motion and securing load capacity generated by waves. To ensure the safe operation of the 3700 ton class car ferry, it is important to analyze the hull acceleration motion based on the sea wave information of the navigation area to determine the cargo securing load that can prevent the movement of cargo. In this study, the meteorological information of three wave buoys installed in Busan and Jeju area was analyzed for the past 5 years. In addition, the hull acceleration was measured in actual sea conditions and compared to that of numerical simulations. Under the condition of a significant wave height of 2.5 m from Feb to Mar, except typhoon seasons, the lateral acceleration was observed to be 1.5 m/s2 in real ship measuring and 1.8 m/s2 in numerical calculation. It was analyzed to be less than 40% under general weather conditions compared to the high wave warning using an approximate formula for estimating the hull motion by wave height. The cargo securing safety proposed in this study will be widely used based on the actual measuring acceleration with the sea wave height.