• Title/Summary/Keyword: Typhoon Surge

Search Result 102, Processing Time 0.021 seconds

Numerical Simulations of the Storm Surges in the Seas Around Korea (한국(韓國) 근해(近海)의 폭풍(暴風) 해일(海溢) 수식(數植) 시뮬레이션)

  • OH, IM SANG;KIM, SEONG IL
    • 한국해양학회지
    • /
    • v.25 no.4
    • /
    • pp.161-181
    • /
    • 1990
  • A numerical model is established in order to simulate the storm surges which were observed in the seas around Korea during typhoon and winter storm periods. The typhoons are Brenda (1985), Vera (1986) and Thelma (1987). the winter storm period is January 1-6, 1986. The simulated surges for the typhoon periods show good agreements with the recorded ones for the periods at the Korean coasts, but those for the winter storm show fair agreements in general tendencies, not in details. The model simulation in open sea shows a positive sea level near the typhoon center and a native sea level behind the typhoon. the positive surge seems to be due to the low pressure near a typhoon center and the negative on due to the wind stresses of the typhoon. The negative sea level is usually in the form of an elongated gyre. In the gyre, there is a cyclonic circulation of sea water, in which the pressure gradient force induced by the circular depression of the sea surface is balanced by the Coriolis force in readjusting stage.

  • PDF

Case Study on the State of Sea Surface with Low Atmospheric Pressure and Typhoon Conditions over the fellow Sea (저기압 및 태풍 통과시 서해상의 해상상태 사례 분석)

  • Pang, Ig-Chan;Lee, Ho-Man;Kim, Tae-Hee
    • Journal of the Korean earth science society
    • /
    • v.25 no.4
    • /
    • pp.277-288
    • /
    • 2004
  • In this study, state of sea surface were analyzed comparatively for cases of low atmospheric pressure, which occurred in the middle area of China and moved eastward to the Korean Peninsula across the Yellow sea during April 9-12, 1999, and typhoons 'NEIL' May 1999 and 'OLGA' July 1999, which moved northward along the west coast of the Korean Peninsula. In cases of low pressure, wind speeds and phases were respectively stronger and faster in the center area than in the surrounding areas. The wave heights seem to a somewhat differing tendency from that of the wind speeds due to the influences of geometry. On the other hand, wave heights were lower under typhoon weather than under low pressures, except the instance of wave height over 5 m on Chilbal when typhoon Olga pass northward from the southern area. Storm surges also showed larger amplitudes under low pressures than under typhoons. The results suggest that wave sand storm surges may be larger for a slow passing synoptic low pressures than for a fast passing local typhoon.

Sea Environmental Design Criteria for Coastal and Offshore Structures

  • Liu, Defu
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.19-22
    • /
    • 1996
  • Extreme sea statistics and combinations of environmental events or response for structures are very important problem in performance evaluation and design of coastal and Offshore structures. A probabilistic method is developed that leads to the combination of Typhoon (Hurricane) or winter storm induces winds, waves, currents and surge for a generic site. The traditional recommendation for the fixed structures is a combination of the 100 years maximum wave height with the 100 years wind and current. (omitted)

  • PDF

Applicability of Coupled Tide-Surge Model (조석-해일 결합모형의 적용성 검토)

  • Park, Seon-Jung;Kang, Ju-Whan;Kim, Yang-Seon;Moon, Seung-Rok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.248-257
    • /
    • 2010
  • Applicability of the MIKE21 model as a real time coupled tide-surge model is examined prior to the application as an inundation model. Though the model domain contains the whole southern coasts of Korean Peninsula, the results of tide simulations show good agreement with the observed values. Moreover, the coupled tide-surge model simulates water levels well, especially near the sites which typhoon MAEMI(0314) struck, such as at Tongyung, Masan and Pusan. In addition, it is confirmed that the interaction between storm surge and tide is notable where the water depth is small and the tidal range is large, which indicates the necessity of coupled model especially at the southwestern coast.

Typhoon Surge Hindcast in the East China Sea Using a Three-dimensional Numerical Model (3 차원수치(次元數値)모델을 이용(利用)한 동지군해(東支郡海)의 태풍해일(颱風海溢)의 산정(算定))

  • Choi, Byung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.67-78
    • /
    • 1984
  • A three-dimensional hydrodynamic numerical model of the Yellow Sea and the East China Sea was developed to investigate the intermediate scale processes in the region. The model was applied to the three dimensional computation of the typhoon induced currents on the continental: shelf for a 5 days period in Summer, 1978. The circulation pattern showing depth and spatial distribution of currents over the Yellow Sea and the East China Sea is presented and analyzed. This initial study has been undertaken in association with the programme of establishment of real-time forecasting schemes based on dynamic principles.

  • PDF

Calculating Sea Surface Wind by Considering Asymmetric Typhoon Wind Field (비대칭형 태풍 특성을 고려한 해상풍 산정)

  • Hye-In Kim;Wan-Hee Cho;Jong-Yoon Mun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.770-778
    • /
    • 2023
  • Sea surface wind is an important variable for elucidating the atmospheric-ocean interactions and predicting the dangerous weather conditions caused by oceans. Accurate sea surface wind data are required for making correct predictions; however, there are limited observational datasets for oceans. Therefore, this study aimed to obtain long-period high-resolution sea surface wind data. First, the ERA5 reanalysis wind field, which can be used for a long period at a high resolution, was regridded and synthesized using the asymmetric typhoon wind field calculated via the Generalized Asymmetric Holland Model of the numerical model named ADvanced CIRCulation model. The accuracy of the asymmetric typhoon synthesized wind field was evaluated using data obtained from Korea Meteorological Administration and Japan Meteorological Administration. As a result of the evaluation, it was found that the asymmetric typhoon synthetic wind field reproduce observations relatively well, compared with ERA5 reanalysis wind field and symmetric typhoon synthetic wind field calculated by the Holland model. The sea surface wind data produced in this study are expected to be useful for obtaining storm surge data and conducting frequency analysis of storm surges and sea surface winds in the future.

Vulnerability Analyses of Wave Overtopping Inundation by Synthesized Typhoons with Sea-Level Rise (해수면 상승과 빈도 합성태풍이 고려된 월파범람 위험성 분석)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.253-264
    • /
    • 2019
  • Storm surges caused by a typhoon occur during the summer season, when the sea-level is higher than the annual average due to steric effect. In this study, we analyzed the sea-level pressure and tidal data collected in 1 h intervals at Incheon, Kunsan, Mokpo, Seogwipo stations on the Yellow Sea coast to analyze the summer season storm surge and wave overtopping. According to our analyses, the summer mean sea-level rise on the west and south coasts is approximately 20 cm and 15 to 20 cm higher than the annual mean sea-level rise. Changes in sea-level rise are closely related to changes in seasonal sea-level pressure, within the range of 1.58 to 1.73 cm/hPa. These correlated mechanisms generates a phase difference of one month or more. The 18.6 year long period tidal constituents indicate that in 2090, the amplitude of the $M_2$ basin peaks on the southwest coast. Therefore, there is a need to analyze the target year for global warming and sea-level rise in 2090. Wave overtopping was simulated considering annual mean sea-level rise, summer sea level rise, the combined effect of nodal factor variation, and 100-year frequency storm surge. As a result, flooding by wave overtopping occurs in the area of Suyong Bay, Busan. In 2090, overtopping discharges are more than doubled than those in Marine City by the recent typhoon Chaba. Adequate coastal design is needed to prepare for flood vulnerability.

Simulation of Inundation at Mokpo City Using a Coupled Tide-Surge Model (조석-해일 결합모형을 이용한 목포시 범람 모의)

  • Park, Seon-Jung;Kang, Ju-Whan;Moon, Seung-Rok;Kim, Yang-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.93-100
    • /
    • 2011
  • A coupled tide-surge model, which has been evaluated the utility in the previous study, is applied for simulating the inundation phenomena. The coupled model system adopts the hydrodynamic module of MIKE21 software, and the study area is identical to the previous study. The only difference is additional detailed areas for simulating inundation. An artificial scenario of a virtual typhoon striking Mokpo coastal zone at spring high tide is simulated. Then the calculated water level corresponds to the extreme high water level(556 cm) for 100 year return period. The result also shows the inundation depth is 50~100 cm not only near the Mokpo Inner Port but also near the Mokpo North Port. Finally, the coastal inundation prediction map is drawn on the basis of inundation simulation results.

Review of the Weather Hazard Research: Focused on Typhoon, Heavy Rain, Drought, Heat Wave, Cold Surge, Heavy Snow, and Strong Gust (위험기상 분야의 지난 연구를 뒤돌아보며: 태풍, 집중호우, 가뭄, 폭염, 한파, 강설, 강풍을 중심으로)

  • Chang-Hoi Ho;Byung-Gon Kim;Baek-Min Kim;Doo-Sun R. Park;Chang-Kyun Park;Seok-Woo Son;Jee-Hoon Jeong;Dong-Hyun Cha
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.223-246
    • /
    • 2023
  • This paper summarized the research papers on weather extremes that occurred in the Republic of Korea, which were published in the domestic and foreign journals during 1963~2022. Weather extreme is defined as a weather phenomenon that causes serious casualty and property loss; here, it includes typhoon, heavy rain, drought, heat wave, cold surge, heavy snow, and strong gust. Based on the 2011~2020 statistics in Korea, above 80% of property loss due to all natural disasters were caused by typhoons and heavy rainfalls. However, the impact of the other weather extremes can be underestimated rather than we have actually experienced; the property loss caused by the other extremes is hard to be quantitatively counted. Particularly, as global warming becomes serious, the influence of drought and heat wave has been increasing. The damages caused by cold surges, heavy snow, and strong gust occurred over relatively local areas on short-term time scales compared to other weather hazards. In particularly, strong gust accompanied with drought may result in severe forest fires over mountainous regions. We hope that the present review paper may remind us of the importance of weather extremes that directly affect our lives.

A Consciousness Survey on Natural Disasters of Inhabitants living in Islands of Korean Southeastern Sea (동남해안 도서 주민의 자연재해에 관한 의식 조사)

  • Hwang, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.36 no.6
    • /
    • pp.443-448
    • /
    • 2012
  • As a basic data to build a countermeasures against coastal disaster, the conscious survey of people living around the coastal are is needed. This study performed the conscious survey on 5 islands located at Korean southeast ocean including Youngdo of Busan. Among many respondents, 503 effective answers are got and followings are the analyzed results. Among the various kinds of disasters, especially the typhoon(28%), storm surge(19%), earthquake(15%) are selected as menacing disasters in mind to coastal inhabitants. Typhoon(60%) and storm surge(21%) were the representative disasters that the coastal inhabitants experienced. 67% among the respondents get the disaster-related information from TV and/or commercial medias, and other 21% depend on their own experiences. Although 33% of respondents attended the disaster-related training and the training time was less than 2 hours, they answered the training was very helpful. Over 85% among the respondents answered they will evacuate if a disaster occur, but only 19% know the evacuee shelter(s). Except the foods, various living goods are selected and willing to carry with for living at shelter if they have to evacuate.