• Title/Summary/Keyword: Typhoon Surge

Search Result 102, Processing Time 0.027 seconds

Economic Analysis of Typhoon Surge Floodplain that Using GIS and MD-FDA from Masan Bay, South Korea (MD-FDA와 GIS를 이용한 마산만의 태풍해일 범람구역 경제성 분석)

  • Choi, Hyun;Ahn, Chang-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.724-729
    • /
    • 2008
  • In the case of 'MAEMI', the Typhoon which formed in September, 2003, the largest-scale damage of tidal wave was caused by the co-occurrence of Typhoon surge and full tide. Until now Korea has been focusing on the calculating the amount of damage and its restoration to cope with these sea and harbor disasters. It is essential to establish some systematic counterplans to diminish such damages of large-scale tidal invasion on coastal lowlands considering the recent weather conditions of growing scale of typhoons. Therefore, the purpose of this research is to make the counterplans for prevention against disasters fulfilled effectively based on the data conducted by comparing and analyzing the accuracy between observation values and the results of estimating the greatest overflow area according to abnormal tidal levels centered on Masan area where there was the severest damage from tidal wave at that time. It's necessary utilize data like high-resolution satellite image and LiDAR(etc.) for correct analysis data considering geographical characteristics of dangerous area from the storm surge. And we must make a solution to minimize the damage by making data of dangerous section of flood into GIS Database using those data (as stated above) and drawing correcter damage function.

Dynamic Simulation of Storm Surge and Storm Water-Combine Inundation on the Jeju Coastal Area (폭풍 해일 및 폭풍우로 인한 제주 해안역에서의 동역학적 범람 모의)

  • Lee, Jung-Lyul;Lee, Byung-Gul;Lee, Joo-Yong;Lim, Heung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1945-1949
    • /
    • 2006
  • A storm-induced coastal inundation model (SICIM) is presented to simulate the flood event during typhoon passage that often results in significant rise in sea-level heights especially in the upstream region of the basin. The SICIM is a GIS-based distributed hydrodynamic model, both storm surge and storm water inundations are taken into account. The spatial and temporal distribution of the storm water level and flux are calculated. The model was applied to Jeju Island since it has an isolated watershed that is easy to handle as a first step of model application. Another reason is that it is surrounded by coastal area exposed to storm surge inundation. The model is still advancing and will be the framework of a predictive early inundation warning system.

  • PDF

Estimation of extreme sea levels at tide-dominated coastal zone (조석이 지배적인 해역의 극치해면 산정)

  • Kang, Ju Whan;Kim, Yang-Seon;Cho, Hongyeon;Shim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.381-389
    • /
    • 2012
  • An EST-based method which is applicable for estimating extreme sea levels from short sea-level records in a tide dominated coastal zone was developed. Via the method, annual maximum tidal level is chosen from the simulated 1-yr tidal data which are constituted by the independent daily high water levels, short term and long term surge heights and typhoon-induced surge heights. The high water levels are generated considering not only spring/neap tides and annual tide but also 18.6-year lunar nodal cycle. Typhoon-induced surges are selected from the training set which is constructed by observed or simulated surge heights. This yearly simulation is repeated many hundred years to yield the extreme tidal levels, and the whole process is carried out many hundred times repeatedly to get robust statistics of the levels. In addition, validation of the method is also shown by comparing the result with other researches with the tidal data of Mokpo Harbor.

Hindcast of Storm Surge in the Southeastern Coast Using a Three-Dimensional Numerical Model (3차원 수치모형을 이용한 남동해안 폭풍해일 산정)

  • Kim, Cha-Kyum;Lee, Jong Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.369-376
    • /
    • 2011
  • A three and two dimensional (3D and 2D) numerical models were established to study the storm surge induced by Typoon Maemi in Masan and Pusan Ports. The typhoon landed on the southern coast of Korean Peninsula at 21:00, September 12, 2003 with a central pressure of 950 hPa. The observed maximum storm surge in Masan Port was 230 cm, and the computed peak storm surge using the 3D and the 2D models were 238 cm and 208 cm, respectively. The observed maximum storm surge in Pusan Port was 89 cm, and the peak storm surge of the 3D and the 2D models were 91 cm and 79 cm, respectively. The hindcasted storm surge using 3D model was in good agreement with the observed data, and the 3D model at peak time was more accurate than the 2D. The storm-induced currents were computed using the 3D model. The currents in the surface layer of Masan Bay went into the inner bay with 30~60 cm/sec, while the currents in the bottom layer flowed out with 20~40 cm/sec.

Characteristics of Storm Surge by Forward Speed of Typhoon in the South Coast of Korea (태풍의 이동속도에 따른 한국 남해안 폭풍해일고의 특성)

  • Park, Young Hyun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.187-194
    • /
    • 2021
  • The damage caused by typhoons is gradually increasing due to the climate change recently. Hence, many studies have been conducted over a long period of time on various factors that determine the characteristics of storm surge, and most of relationships have been discovered. Because storm surge is complexly determined by various factors, it often show different results and draw different conclusions. For this reason, this study was conducted to understand the various characteristics of storm surge caused by changes in the forward speed of typhoons. This study was carried out with a numerical model, and the effect of forward speed could be analyzed by simplifying other factors as much as possible. When forward speed is increased, storm surges caused by typhoons tended to increase gradually. The storm surge showed a wide and gentle increase at a slow speed, but a narrow and steep one at a fast speed. In the case of the same forward speed, it was found that the storm surge was significantly influenced by the water depth of actual sea area. It was confirmed that the change in forward speed after passing Jeju Island did not significant affect on the storm surge in the south coast of Korea.

Inundation Analysis Considering Water Waves and Storm Surge in the Coastal Zone (연안역에서 고파랑과 폭풍해일을 고려한 침수해석)

  • Kim, Do-Sam;Kim, Ji-Min;Lee, Gwang-Ho;Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.35-41
    • /
    • 2007
  • In general, coastal damage is mostly occurred by the action of complex factors, like severe water waves. If the maximum storm surge height combines with high tide, severe water waves will overflow coastal structures. Consequently, it can be the cause of lost lives and severe property damage. In this study, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the coast in front of Noksan industrial complex, Korea. Moreover, the shallow water wave is estimated by applying wind field, design water level considering storm surge height for typhoon Maemi to SWAN model. Under the condition of shallow water wave, obtained by the SWAN model, the wave overtopping rate for the dike in front of Noksan industrial complex is calculated a hydraulic model test. Finally, based on the calculated wave-overtopping rate, the inundation regime for Noksan industrial complex was predicted. And, numerically predicted inundation regimes and depths are compared with results in a field survey, and the results agree fairly well. Therefore, the inundation modelthis study is a useful tool for predicting inundation regime, due to the coastal flood of severe water wave.

Estimation of Extreme Sea Levels Reflecting Tide-Surge Characteristics (조석-해일 특성을 반영한 극치해면고 산정)

  • Kang, Ju Whan;Kim, Yang-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.103-113
    • /
    • 2018
  • Tide-surge characteristics of the West/South domestic coasts were analyzed with a tool of EST (empirical simulation technique). As a result, stations of Incheon, Gunsan, Mokpo and Busan are categorized as tide-dominant coasts, while Yeosu, Tongyoung and Busan are as surge-dominant coasts. In the tide-dominant coasts, extreme sea level of less than 50-yr frequency is formed without typhoon-surge, while only 10-yr extreme sea level is formed in the surge-dominant coasts. As the results of casual condition of extreme sea level formation considering the relative degree of surge on tide, the regional characteristics were detected also. Three methods for estimating the design tide level were compared. The AHHW method shows an unrealistic outcomes of the concern of over estimate design. Furthermore, the probability distribution function method has been concerned as causing missing data if a huge typhoon occurs in a neap tide or a low tide. To cope with these drawbacks, the applicability of the EST method is proved to be suitable especially in tide-dominant coasts.

Calculation of Water Level Variations and Extreme Waves in Busan Harbor due to Storm Surges (고조로 인한 부산항 해수면 변화 및 극한파랑의 산정)

  • Whang Ho-Dong;Lee Joong-Woo;Kwon So-Hyun;Yang Sang-Yong;Gum Dong-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.227-234
    • /
    • 2004
  • Recently huge typhoons had attacked to the coastal waters in Korea and caused disastrous casualties in those area. There are some discussions on correction to the design parameters for the coastal structures. Wave transformation computations with the extreme waves are of value in planning and constructing engineering works, especially in coastal regions. Prediction of typhoon surge elevations is based primarily on the use of a numerical model in this study, since it is difficult to study these events in real time or with use of physical models. Wave prediction with a two dimensional numerical model for a site with complicated coastal lines and structures at the period of typhoon 'Maemi' is discussed. In order to input parameters for the extreme wave conditions, we analyzed the observed and predicted typhoon data. Finally we applied the model discussed above to the storm surge and extreme wave problem at Busan Harbor, the southeast coast of Korea. Effects of water level variation and transformation of the extreme waves in relation with the flooding in coastal waters interested are analyzed. We then mack an attempt to presen a basic hazard map for the corresponding site.

  • PDF