DOI QR코드

DOI QR Code

Characteristics of Storm Surge by Forward Speed of Typhoon in the South Coast of Korea

태풍의 이동속도에 따른 한국 남해안 폭풍해일고의 특성

  • Park, Young Hyun (Costal Development and Energy Research Center, Korea Institute of Ocean Science & Technology) ;
  • Park, Woo-Sun (Costal Development and Energy Research Center, Korea Institute of Ocean Science & Technology)
  • 박영현 (한국해양과학기술원 연안개발에너지 연구센터) ;
  • 박우선 (한국해양과학기술원 연안개발에너지 연구센터)
  • Received : 2021.09.10
  • Accepted : 2021.09.30
  • Published : 2021.10.31

Abstract

The damage caused by typhoons is gradually increasing due to the climate change recently. Hence, many studies have been conducted over a long period of time on various factors that determine the characteristics of storm surge, and most of relationships have been discovered. Because storm surge is complexly determined by various factors, it often show different results and draw different conclusions. For this reason, this study was conducted to understand the various characteristics of storm surge caused by changes in the forward speed of typhoons. This study was carried out with a numerical model, and the effect of forward speed could be analyzed by simplifying other factors as much as possible. When forward speed is increased, storm surges caused by typhoons tended to increase gradually. The storm surge showed a wide and gentle increase at a slow speed, but a narrow and steep one at a fast speed. In the case of the same forward speed, it was found that the storm surge was significantly influenced by the water depth of actual sea area. It was confirmed that the change in forward speed after passing Jeju Island did not significant affect on the storm surge in the south coast of Korea.

최근 기후변화에 의한 영향으로 태풍에 의한 피해가 점차 증가하고 있다. 이에 따라 폭풍해일의 특성을 결정하는 여러 요소에 대해 오랫동안 많은 연구가 수행되었으며, 대부분의 연관성들이 발견되었다. 폭풍해일은 여러 요소에 의해 복합적으로 결정되는 이유로 다른 결과를 보여주는 경우가 많아 연구마다 다른 결론을 내리는 경우가 많았다. 이런 이유로 태풍의 이동속도 변화에 의한 폭풍해일의 다양한 특성들을 이해하기 위해 본 연구를 수행하였다. 본 연구는 수치해석 프로그램을 이용하여 수행되었으며, 이동속도에 의한 영향을 분석하기 위해 다른 요소들을 최대한 단순화하였다. 수치해석 결과 태풍에 의한 폭풍해일은 이동속도가 빨라질 경우 점차 증가하는 경향을 보였다. 폭풍해일은 느린 이동속도에서는 넓고 완만하게 증가하였으며, 빠른 이동속도에서는 좁고 급하게 증가하는 형상을 보여주었다. 동일한 이동속도의 경우 실제 해역의 수심 영향이 폭풍해일에 크게 작용하는 것으로 판단된다. 제주도를 지나 이동속도가 변화하는 경우 남해안의 폭풍해일에 큰 영향을 미치지 못하는 것을 확인하였다.

Keywords

Acknowledgement

이 성과는 정부(해양수산부)의 재원으로 한국해양과학기술원의 지원을 받아 수행된 연구이며(PE99931, 해양에너지 및 항만해양구조물 실용화 기술개발), 또한 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2017R1A5A1014883, 스마트 수중 터널 시스템 연구센터).

References

  1. Kang, J.H., Park, S.J., Moon, S.R. and Yoon, J.T. (2009). Effects of Typhoon's characteristics on the storm surge at gyeongnam coastal zone. Journal of Korean Society of Coastal and Ocean Engineers, 21(1), 1-14 (in Korean).
  2. Korea Hydrographic and Oceanographic Administration (2011). Mapping and Distribution of Coastal Inundation Maps-Final report (in Korean).
  3. Lee, T.-L. (2006). Neural network predictions of a storm surge. Ocean Engineering, 33(3), 483-494. https://doi.org/10.1016/j.oceaneng.2005.04.012
  4. Luettich, Jr. R., Westerink, J. and Scheffner, N.W. (1992). ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. DTIC Document.
  5. Park, J.K., Kim, B.S., Jung, W.S., Kim, E.B. and Lee, D.G. (2006). Change in statistical characteristics of typhoon affecting the Korean Peninsula. Atmosphere, 16(1), 1-17.
  6. Park, Y.H. and Suh K.D. (2012). Variation of storm surge caused by shallow water depths and extreme tidal range. Ocean Engineering, 55, 44-51. https://doi.org/10.1016/j.oceaneng.2012.07.032
  7. Park, Y.H. and Youn, D. (2020). The Characteristics of storm surge based on the forward speed of the storm, Proceedings of International Conference on Aquatic Science & Technology, Busan, Korea.
  8. Peng, M., Xie, L. and Pietrafesa, L.J. (2004). A numerical study of storm surge and inundation in the Croatan-Albemarle-Pamlico Estuary System. Estuarine, Coastal and Shelf Science, 59(1), 121-137. https://doi.org/10.1016/j.ecss.2003.07.010
  9. Rego, J.L. and Li, C. (2009). On the importance of the forward speed of hurricanes in storm surge forecasting: A numerical study, Geophysical Research Letters, 36(7).
  10. Rego, J.L. and Li, C. (2010). Nonlinear terms in storm surge predictions: Effect of tide and shelf geometry with case study from Hurricane Rita. Journal of Geophysical Research: Oceans, 115(C6).
  11. Sebastian, A., Proft, J., Dietrich, J.C., Du, W., Bedient, P.B. and Dawson, C.N. (2014). Characterizing hurricane storm surge behavior in Galveston Bay using the SWAN+ ADCIRC model. Coastal Engineering, 88, 171-181. https://doi.org/10.1016/j.coastaleng.2014.03.002
  12. Thomas, A., D ietrich, J.C., Asher, T.G., Bell, M., Blanton, B.O., Copeland, J.H., Cox, A.T., Dawson, C.N., Fleming, J.G. and Luettich, R.A. (2019). Influence of storm timing and forward speed on tides and storm surge during Hurricane Matthew. Ocean Modelling, 137, 1-19. https://doi.org/10.1016/j.ocemod.2019.03.004
  13. Weisberg, R.H. and Zheng, L. (2006). Hurricane storm surge simulations for Tampa Bay. Estuaries and Coasts, 29(6), 899-913. https://doi.org/10.1007/BF02798649
  14. Westerink, J.J., Luettich, R.A., Baptists, A.M., Scheffner, N.W. and Farrar, P. (1992). Tide and storm surge predictions using finite element model. Journal of hydraulic Engineering, 118(10), 1373-1390. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:10(1373)
  15. Zhang, C. (2012). Effect of hurricane forward speed and approach angle on coastal storm surge. Master theses, Louisiana State University, Baton Rouge.