• Title/Summary/Keyword: Tying Modeling

Search Result 14, Processing Time 0.023 seconds

Decision Tree State Tying Modeling Using Parameter Estimation of Bayesian Method (Bayesian 기법의 모수 추정을 이용한 결정트리 상태 공유 모델링)

  • Oh, SangYeob
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.243-248
    • /
    • 2015
  • Recognition model is not defined when you configure a model, Been added to the model after model building awareness, Model a model of the clustering due to lack of recognition models are generated by modeling is causes the degradation of the recognition rate. In order to improve decision tree state tying modeling using parameter estimation of Bayesian method. The parameter estimation method is proposed Bayesian method to navigate through the model from the results of the decision tree based on the tying state according to the maximum probability method to determine the recognition model. According to our experiments on the simulation data generated by adding noise to clean speech, the proposed clustering method error rate reduction of 1.29% compared with baseline model, which is slightly better performance than the existing approach.

A phoneme duration modeling in a speech recognition system based on decision tree state tying (결정트리기반 음성인식 시스템에서의 음소지속시간 사용방법)

  • Koo Myoun-Wan;Kim Ho-Kyoung
    • Proceedings of the KSPS conference
    • /
    • 2002.11a
    • /
    • pp.197-200
    • /
    • 2002
  • In this paper, we propose a phoneme duration modeling in a speech recognition system based on disicion tree state tying. We assume that phone duration has a Gamma distribution. In a training mode, we model mean and variance of each state duration in context-independent phone model based on decision tree state tying. In a recognition mode, we get mean and variance of each context-dependent phone duration form state duration information obtaind during training mode. We make a comparative study of the proposed meth with conventinal methods. Our method results in good performance compared with conventional methods.

  • PDF

Retrieve System for Performance support of Vocabulary Clustering Model In Continuous Vocabulary Recognition System (연속 어휘 인식 시스템에서 어휘 클러스터링 모델의 성능 지원을 위한 검색 시스템)

  • Oh, Sang Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.339-344
    • /
    • 2012
  • Established continuous vocabulary recognition system improved recognition rate by using decision tree based tying modeling method. However, since system model cannot support the retrieve of phoneme data, it is hard to secure the accuracy. In order to improve this problem, we remodeled a system that could retrieve probabilistic model from continuous vocabulary clustering model to phoneme unit. Therefore in this paper showed 95.88%of recognition rate in system performance.

Efficient Continuous Vocabulary Clustering Modeling for Tying Model Recognition Performance Improvement (공유모델 인식 성능 향상을 위한 효율적인 연속 어휘 군집화 모델링)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.177-183
    • /
    • 2010
  • In continuous vocabulary recognition system by statistical method vocabulary recognition to be performed using probability distribution it also modeling using phoneme clustering for based sample probability parameter presume. When vocabulary search that low recognition rate problem happened in express vocabulary result from presumed probability parameter by not defined phoneme and insert phoneme and it has it's bad points of gaussian model the accuracy unsecure for one clustering modeling. To improve suggested probability distribution mixed gaussian model to optimized for based resemble Euclidean and Bhattacharyya distance measurement method mixed clustering modeling that system modeling for be searching phoneme probability model in clustered model. System performance as a result of represent vocabulary dependence recognition rate of 98.63%, vocabulary independence recognition rate of 97.91%.

Performance Comparison of Acoustic Modeling Technique (음소 모델링 방식들의 성능 비교)

  • 송명규
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.377-380
    • /
    • 1998
  • HMM 기반의 음성 인식기를 구현하는데 있어서 모델의 복잡도와 제한된 훈련 데이터 사이의 균형을 유지하는 것은 중요한 문제이다. 중간규모 또는 대용량 어휘 인식 시스템은 정교한 모델을 얻기 위해서 문맥종속 음소 모델링이 필수적이다. 그러나, 제한된 훈련 데이터로는 발생 가능한 모든 context를 포함하기가 어렵고, 더구나 훈련 데이터에서 관찰된 context중에서도 그 관찰빈도가 낮은 것이 많아서 신뢰성 있는 문맥종속 모델들을 얻기에는 여전히 어려움이 따른다. 또한 경우에 따라서는 계산량의 감축을 위하여 모델 규모를 축소시킬 필요도 생긴다. 이러한 문제를 해결하기 위해 본 논문에서는 unit reduction 방법들과 state tying을 이용한 방법들의 성능을 실험을 통해 비교한다. 고립단어 인식 실험결과 state tying을 이용한 방법이 unit reduction에 비하여 우수함을 확인 할 수 있었다.

  • PDF

Efficient context dependent process modeling using state tying and decision tree-based method (상태 공유와 결정트리 방법을 이용한 효율적인 문맥 종속 프로세스 모델링)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.369-377
    • /
    • 2010
  • In vocabulary recognition systems based on HMM(Hidden Markov Model)s, training process unseen model bring on show a low recognition rate. If recognition vocabulary modify and make an addition then recreated modeling of executed database collected and training sequence on account of bring on additional expenses and take more time. This study suggest efficient context dependent process modeling method using decision tree-based state tying. On study suggest method is reduce recreated of model and it's offered that robustness and accuracy of context dependent acoustic modeling. Also reduce amount of model and offered training process unseen model as concerns context dependent a likely phoneme model has been used unseen model solve the matter. System performance as a result of represent vocabulary dependence recognition rate of 98.01%, vocabulary independence recognition rate of 97.38%.

Improved Decision Tree-Based State Tying In Continuous Speech Recognition System (연속 음성 인식 시스템을 위한 향상된 결정 트리 기반 상태 공유)

  • ;Xintian Wu;Chaojun Liu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.49-56
    • /
    • 1999
  • In many continuous speech recognition systems based on HMMs, decision tree-based state tying has been used for not only improving the robustness and accuracy of context dependent acoustic modeling but also synthesizing unseen models. To construct the phonetic decision tree, standard method performs one-level pruning using just single Gaussian triphone models. In this paper, two novel approaches, two-level decision tree and multi-mixture decision tree, are proposed to get better performance through more accurate acoustic modeling. Two-level decision tree performs two level pruning for the state tying and the mixture weight tying. Using the second level, the tied states can have different mixture weights based on the similarities in their phonetic contexts. In the second approach, phonetic decision tree continues to be updated with training sequence, mixture splitting and re-estimation. Multi-mixture Gaussian as well as single Gaussian models are used to construct the multi-mixture decision tree. Continuous speech recognition experiment using these approaches on BN-96 and WSJ5k data showed a reduction in word error rate comparing to the standard decision tree based system given similar number of tied states.

  • PDF

A Study on the Optimization of State Tying Acoustic Models using Mixture Gaussian Clustering (혼합 가우시안 군집화를 이용한 상태공유 음향모델 최적화)

  • Ann, Tae-Ock
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.167-176
    • /
    • 2005
  • This paper describes how the state tying model based on the decision tree which is one of Acoustic models used for speech recognition optimizes the model by reducing the number of mixture Gaussians of the output probability distribution. The state tying modeling uses a finite set of questions which is possible to include the phonological knowledge and the likelihood based decision criteria. And the recognition rate can be improved by increasing the number of mixture Gaussians of the output probability distribution. In this paper, we'll reduce the number of mixture Gaussians at the highest point of recognition rate by clustering the Gaussians. Bhattacharyya and Euclidean method will be used for the distance measure needed when clustering. And after calculating the mean and variance between the pair of lowest distance, the new Gaussians are created. The parameters for the new Gaussians are derived from the parameters of the Gaussians from which it is born. Experiments have been performed using the STOCKNAME (1,680) databases. And the test results show that the proposed method using Bhattacharyya distance measure maintains their recognition rate at $97.2\%$ and reduces the ratio of the number of mixture Gaussians by $1.0\%$. And the method using Euclidean distance measure shows that it maintains the recognition rate at $96.9\%$ and reduces the ratio of the number of mixture Gaussians by $1.0\%$. Then the methods can optimize the state tying model.

An Approach to the Market Analysis of KoreaSat Services

  • Park, Myeong-Cheol;Choi, Hyuk-Jun
    • ETRI Journal
    • /
    • v.15 no.2
    • /
    • pp.53-68
    • /
    • 1993
  • The field of marketing research in the satellite communication services is still in the early stage of its development. Particularly, in Korean domestic satellite service market, many theoretical and methodological opportunities now exist. In this paper we develop a model, which identifies target markets and promising application services in Korean satellite communication service Market. One key contribution of this paper is a modeling approach to the assessment of market potential and priorities of the application services in each Korean industry. We define and estimate the degree of attractiveness for each segmented market which represents the market potential estimated by current usage of terrestrial services and each market segment's willingness to adopt satellite technology. Since all possible satellite application services are not equally important in the market, they should be differentiated in terms of the likelihood of success. We introduce another index prioritizing application services by tying together three important factors affecting Korean satellite service demand. Some marketing implications of model results are also discussed. Finally the findings of our model are compared with those of other similar studies.

  • PDF

Development of Auto Calibration Program for Instruments by Excel Vba (Excel VBA를 이용한 계측기기 자동 교정용 프로그램 개발)

  • 조현섭;김희숙
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.1
    • /
    • pp.29-33
    • /
    • 2004
  • In this paper, I'm tying to define the connection of the Device Characteristics and the Error Terms, and yield maximum estimated value of the mismatching errors by modeling the individual devices with signal-flow graph, and by seeking the transfer function of the system with the mismatching error in the combination of the devices using the Signal-flow Graph Gain Formula.

  • PDF