• Title/Summary/Keyword: Twyman-Green interferometry

Search Result 8, Processing Time 0.029 seconds

Real-time Measurement and Compensation of Motion Errors Using Extended Twyman-Green Interferometry (확장 트와이만-그린 간섭계를 이용한 운동 오차의 실시간 측정 및 보상)

  • 오정석;배은덕;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.288-291
    • /
    • 2003
  • This paper presents an extended Twyman-Green interferometry that enables simultaneous and real-time measurement of 5-DOF motion errors of the translational moving stage. This method uses a null balancing technique in which two plane mirrors are used as target mirrors to generate an interferometric fringe utilizing the optical principles of Twyman-Green interferometry. Fringe is detected by 2D photodiode array for high-speed measurement. Errors are then independently suppressed by activation of piezoelectric actuators through real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with motion errors about 10 nm in linear displacement, 0.15 arcsec in angular displacement

  • PDF

Real-time Compensation of Motion Errors Using Extended Twyman-Green Interferometry (확장 트와이만-그린 간섭계를 이용한 운동 오차의 실시간 보상)

  • 배은덕;오정석;김승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.112-119
    • /
    • 2003
  • This paper presents an extended Twyman-Green interferometry that enables simultaneous and real-time measurement of 5-DOF motion errors of the translational moving stage. This method uses a null balancing technique in which two plane mirrors are used as target mirrors to generate an interferometric fringe utilizing the optical principles of Twyman-Green interferometry. Fringe is detected by 2D photodiode array for high-speed measurement. Errors are then independently suppressed by activation of piezoelectric actuators through real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with motion errors about 10 nm in linear displacement, 0.15 arcsec in angular displacement.

Real-Time Correction of Movement Errors of Machine Axis by Twyman-Green Interferometry (광위상 간섭을 이용한 이송축의 운동오차 실시간 보상)

  • 이형석;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3115-3123
    • /
    • 1993
  • This paper presents a real-time correction method of the movemont errors of a translatory precision machine axis. This method is a null-balances technique in which two plane mirrors are used to generate an interferometric fringe pattern utilizing the optical principles of TwymanGreen interferometry. One mirror is fixed on a reference frame, while the other is placed on the machine axis being supported by three piezoelectric actuators. From the fringe pattern, one translatory and two rotational error components of the machine axis are simultaneously detected by using CCD camera vision and image processing techniques. These errors are then independently suppressed by activating the peizoelectric actuators by real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with movement errors less than 10 nm in vertical straightness, 0.1 arcsec in pitch, and 0.06 arcsec in roll for 50mm travel by adopting the real-time correction method.

Unequal-path Low-coherence Interferometry Using Femtosecond Pulse Lasers for Surface-profile Metrology (펨토초 레이저를 이용한 형상 측정용 비동일 광경로 저결 맞음 간섭계)

  • Oh, Jeong-Seok;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.102-110
    • /
    • 2006
  • We discuss two possibilities of using femtosecond pulse lasers as a new interferometric light source for enhanced precision surface-profile metrology. First, a train of ultra-fast laser pulses yields repeated low temporal coherence, which allows unequal-path scanning interferometry, which is not feasible with white light. Second, the high spatial coherence of femtosecond pulse lasers enables large-sized optics to be tested in nonsymmetric configurations with relatively small-sized reference surfaces. These two advantages are verified experimentally using Fizeau and Twyman-Green type scanning interferometers.

Effect analysis of thermal-mechanical behavior on fatigue crack of flip-chip electronic package (플립 칩 전자 패키지의 피로 균열이 미치는 열적 기계적 거동 분석)

  • Park, Jin-Hyoung;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1673-1678
    • /
    • 2007
  • The use of flip-chip type electronic package offers numerous advantages such as reduced thickness, improved environmental compatibility, and downed cost. Despite numerous benefits, flip-chip type packages bare several reliability problems. The most critical issue among them is their electrical performance deterioration upon consecutive thermal cycles attributed to gradual delamination growth through chip and adhesive film interface induced by CTE mismatch driven shear and peel stresses. The electronic package in use is heated continuously by itself. When the crack at a weak site of the electronic package occurs, thermal deformationon the chip side is changed. Therefore, we can measure these micro deformations by using Moire interferometry and find out the crack length.

  • PDF

Unequal-path Low-coherence Interferometry Using Femtosecond Pulse Lasers (펨토초 레이저를 이용한 비동일 광경로 저결맞음 간섭계)

  • Oh J.S.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.204-207
    • /
    • 2005
  • We discuss two possibilities of using femtosecond pulse lasers as a new interferometric light source fer enhanced precision surface profile metrology. First, a train of ultra-fast laser pulses yields repeated low temporal coherence, which allows performing unequal-path scanning interferometry that is not feasible with white light. Second, high spatial coherence of femtosecond pulse lasers enables to test large size optics in non-symmetric configurations with relatively small size reference surfaces. These two advantages are verified experimentally using Fizeau and Twyman-Green type scanning interferometers.

  • PDF

Fourier transform method of surface topography and interferometry (푸리에 변환을 이용한 파면위상의 복구)

  • 남기봉
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.20-26
    • /
    • 1992
  • The fourier transform method of retrieving the phase of the test wavefront from a Twyman-Green interferometer was reviewed by numerical simulations and experiments. Of the two methods reviewed, Takeda's approach proved more reliable in reconstructing the deformation of the test surface. The application of this approach to a plane mirror showed the existence of the surface curvature, whose maximum deviation was about $\lambda$/6. The accuracy in the measurement was evaluated to be around $\lambda$/40.

  • PDF

Real-time Measurement of Motion Errors Using Extended Twyman-Green Interferometry (확장 트와이만-그린 간섭계를 이용한 직선 운동오차의 실시간 측정)

  • 배은덕;오정석;김승우
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.90-91
    • /
    • 2003
  • 대부분의 가공기 혹은 측정기에 있어 이송테이블은 그 기능수행의 기본을 담당하고 있으며 이송테이블의 운동 정밀도와 고속화는 목표하는 정밀도와 생산성으로 직결된다. 종래에는 형상특성, 열변형 등의 계통 오차만을 오프라인(Off-line)으로 측정하고 소프트웨어적으로 보상하는 방법을 사용하였으나 초정밀 분야에서 요구되는 테이블의 운동정밀도는 기계적 강성한계를 넘는 정밀도이므로, 테이블 이송 시 발생하는 운동오차를 실시간으로 측정하고, 보상할 수 있는 온라인(On-line)개념의 능동형 보상이 필요하다. (중략)

  • PDF