• Title/Summary/Keyword: Twophase Flow

Search Result 8, Processing Time 0.022 seconds

ANALYSIS OF TWOPHASE FLOW MODEL EQUATIONS

  • Jin, Hyeonseong
    • Honam Mathematical Journal
    • /
    • v.36 no.1
    • /
    • pp.11-27
    • /
    • 2014
  • In this paper, we propose closures for multi-phase flow models, which satisfy boundary conditions and conservation constraints. The models governing the evolution of the fluid mixing are derived by applying an ensemble averaging procedure to the microphysical equations characterized by distinct phases. We consider compressible multi species multi-phase flow with surface tension and transport.

Fluid-elastic Instability in a Tube Array Subjected to Two-Phase Cross Flow (2 상 횡 유동장에 놓인 관군의 유체탄성불안정성)

  • Sim, Woo-Gun;Park, Mi-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.124-132
    • /
    • 2009
  • Experiments have been performed to investigate fluid-elastic instability of tube bundles, subjected to twophase cross flow. Fluid-elastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to the cross flow. The test section consists of cantilevered flexible cylinder(s) and rigid cylinders of normal square array. From a practical design point of view, fluid-elastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping parameter. For dynamic instability of cylinder rows, added mass, damping and the threshold flow velocity are evaluated. The Fluid-elastic instability coefficient is calculated and then compared to existing results given for tube bundles in normal square array.

CURRENT STATUS OF THERMAL/HYDRAULIC FEASIBILITY PROJECT FOR REDUCED- MODERATION WATER REACTOR (2) - DEVELOPMENT OF TWO-PHASE FLOW SIMULATION CODE WITH ADVANCED INTERFACE TRACKING METHOD

  • Yoshida, Hiroyuki;Tamai, Hidesada;Ohnuki, Akira;Takase, Kazuyuki;Akimoto, Hajime
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.119-128
    • /
    • 2006
  • We start to develop a predictable technology for thermal-hydraulic performance of the RMWR core using an advanced numerical simulation technology. As a part of this technology development, we are developing the advanced interface tracking method to improve the conservation of volume of fluid. The present paper describes a part of the development of the twophase flow simulation code TPFIT with the advanced interface tracking method. The numerical results applied to large-scale water-vapor two-phase flow in tight lattice rod bundles are shown and compared with experimental results. In the results of numerical simulation, a tendency of the predicted void fraction distribution in horizontal plane agreed with the measured values obtained by the advanced neutron radiography technique including the bridge formation of the liquid at the position of adjacent fuel rods where an interval is the narrowest.

Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop (환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구)

  • Lee, Dong-Yeop;Kim, Yoon-Kee;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

Study of Wettability Effect on Pressure Drop and Flow Pattern of Two-Phase Flow in Rectangular Microchannel (사각 마이크로채널 내의 2 상유동 압력강하와 유동양식에 대한 젖음성의 영향에 대한 연구)

  • Choi, Chi-Woong;Yu, Dong-In;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.939-946
    • /
    • 2009
  • Wettability is a critical parameter in micro-scale two-phase system. Several previous results indicate that wettability has influential affect on two-phase flow pattern in a microchannel. However, previous studies conducted using circular microtube, which was made by conventional fabrication techniques. Although most applications for micro thermal hydraulic system has used a rectangular microchannel, data for the rectangular microchannel is totally lack. In this study, a hydrophilic rectangular microchannel was fabricated using a photosensitive glass. And a hydrophobic rectangular microchannel was prepared using silanization of glass surfaces with OTS (octa-dethyl-trichloro-siliane). Experiments of two-phase flow in the hydrophilic and the hydrophobic rectangular microchannels were conducted using water and nitrogen gas. Visualization of twophase flow pattern was carried out using a high-speed camera and a long distance microscope. Visualization results show that the wettability was important for two-phase flow pattern in rectangular microchannel. In addition, two-phase frictional pressure drop was highly related with flow patterns. Finally, Two-phase frictional pressure drop was analyzed with flow patterns.

Optimum Header Design for the Uniform Distribution of Two Phase Flow in the Evaporator (증발기 내 이상유동의 균열 분배를 위한 헤더 형상의 최적화)

  • Choi Chi-Woong;Kim Moo-Hwan;Cho Nam-Soo;Lee Jang-Suk;Lee Jang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.780-787
    • /
    • 2006
  • Several types of different header designs are numerically studied to have uniform distribution of two phase flow in the evaporator header having multi-channels. The different geometries include the inlet tube position into the header and the width of header. In the numerical calculation, two types of two-phase model such as homogeneous model and VOF(Volume Of Fluid) model are employed. In this study, the mal-distribution number, $M_d$, is newly defined to evaluate the averaged level of the flow distribution in the whole passes of the evaporator. As results, two phase flow in the header can be visualized using post-processing of numerical results. Furthermore, the optimum position of the inlet tube into the header and the width of header can be proposed for the better distribution of refrigerant(R-134a) flow.

Study on the numerical models of turbulent dispersion of solid particles in a two-phase turbulent jet flow (이상난류제트 유동에서 고체입자 난류확산의 수치모델에 관한 연구)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 1987
  • Prediction performances by Einstein's equation of diffusivity, Peskin's model, Three-Equation model, Four-Equation model and Algebraic Stress Model, have been compared by analyzing twophase (air-solid) turbulent jet flow. Turbulent kinetic energy equation of dispersed phase was solved to investigate effects of turbulent kinetic energy on turbulent diffusivity. Turbulent kinetic energy dissipation rate of particles has been considered by solving turbulent kinetic energy dissipation rate equation of dispesed phase and applying it to turbulent diffusivity of dispersed phase. Results show that turbulent diffusivity of dispersed phase can be expressed by turbulent kinetic energy ratio between phases and prediction of turbulent kinetic energy was improved by considering turbulent kinetic energy dissipation rate of dispersed phase for modelling turbulent diffusivity. This investigation also show that Algebraic Stress Model is the most promising method in analyzing gas-solid two phaes turbulent flow.

A Study on the Improvement of Dynamic Characteristics of Spindle-Work System in Lathe - Focused on the Bolt Juint between Headstock and Bed - (선반주축계의 동특성 향상에 관한 연구 -주축대와 베드의 보울트 결합을 중심으로-)

  • 신용호;박태원;홍동표;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • Prediction performances by Einstein's equation of diffusivity, Peskin's model, Three-Equation model, Four-Equation model and Algebraic Stress Model, have been compared by analyzing twophase (air-solid) turbulent jet flow. Turbulent kinetic energy equation of dispersed phase was solved to investigate effects of turbulent kinetic energy on turbulent diffusivity. Turbulent kinetic energy dissipation rate of particles has been considered by solving turbulent kinetic energy dissipation rate equation of dispersed phase and applying it to turbulent diffusivity of dispersed phase. Results show that turbulent diffusivity of dispersed phase can be expressed by turbulent kinetic energy ratio between phases and prediction of turbulent kinetic energy was improved by considering turbulent kinetic energy dissipation rate of dispersed phase for modelling turbulent diffusivity. This investigation also show that Algebraic Stress Model is the most promising method in analyzing gas-solid two phases turbulent flow.