• 제목/요약/키워드: Two-wheel mobile robot

검색결과 94건 처리시간 0.033초

퍼지-뉴럴 제어기법에 의한 이동형 로봇의 자율주행 제어시스템 설계 (Design of automatic cruise control system of mobile robot using fuzzy-neural control technique)

  • 한성현;김종수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1804-1807
    • /
    • 1997
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learnign architecture. It is proposed a learning controller consisting of two neural networks-fuzzy based on independent reasoning and a connecton net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

퍼지-뉴럴 제어기법에 의한 이동형 로봇의 자세 제어 (Orientation Control of Mobile Robot Using Fuzzy-Neural Control Technique)

  • 김종수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.82-87
    • /
    • 1997
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

퍼지-뉴럴 제어기법에 의한 이동 로봇의 자율주행 제어시스템 개발 (Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique)

  • 김종수;한덕기;김영규;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.250-254
    • /
    • 2001
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

퍼자-뉴럴 제어기법에 의한 이동형 로봇의 자율주행 제어시스템 설계 (Design of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Technique)

  • 김휘동
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.199-203
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

퍼지-뉴럴 제어기법을 이용한 이동형 로봇의 자율주행 제어시스템 개발 (Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique)

  • 김휘동;양승윤;전완수;안병국;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.130-134
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Design of Fuzzy-Neural Control Technique Using Automatic Cruise Control System of Mobile Robot

  • Kim, Jong-Soo;Jang, Jun-Hwa;Lee, Jin;Han, Sung-Hyung;Han, Dunk-Ki;Kim, Yong-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.69.3-69
    • /
    • 2001
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

A Study on an Intelligent Motion Control of Mobile Robot Based on Iterative Learning for Smart Factory

  • Im, Oh-Duck;Kim, Hee-Jin;Kang, Da-Bi;Kim, Min-Chan;Han, Sung-Hyun
    • 한국산업융합학회 논문집
    • /
    • 제25권4_1호
    • /
    • pp.521-531
    • /
    • 2022
  • This study proposed a new approach to intelligent control of a mobile robot system by back properpagation based on multi-layer neural network. A experiment result is given in which some artificial assumptions about the linear and the angluar velocities of mobile robots from recent literature are dropped. In this study, we proposed a new thinique to impliment the real time conrol of he position and velocity of mobile robots. With the proposed control techinique, mobile robots can now globally follow any path such as a straight line, a circle and the path approaching th toe origin using proposed controller. Computer simulations are presented, which confirm the effectiveness of the proposed control algorithm. Moreover, practical experimental results concerning the real time control are reported with several real line constraints for mobile robots with two wheel driving.

모바일 역진자의 수평유지와 주행을 위한 실시간 자세 제어 (Real Time Pose Control for the Horizontal Maintenance and driving of Mobile Inverted Pendulum)

  • 강진구
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권7호
    • /
    • pp.157-163
    • /
    • 2011
  • 본 논문에서는 ARS(Attitude Refrence System)를 이용하여 모바일 역진자 로봇의 수평유지와 주행을 위한 자세 제어를 연구하였다. 현재 미국 및 여러 나라에서는 모바일 역진자 로봇에 대한 많은 연구가 진행되고 있으며 이를 이용한 세그 웨이 등을 개발하고 있다. 이러한 2자유도를 이용한 모바일 역진자 로봇은 다양한 모드로 움직일 수 있다. 모바일 역진자 로봇이 2바퀴로 수직 자세를 취하면 시스템이 안정을 취하기 위하여 항상 앞, 또는 뒤로 넘어지려는 성질을 가진다. 현재 자이로센서와 가속도센서를 혼합하는 알고리즘은 칼만필터가 일반적으로 이용되고있으며 많은 연구가 진행되고 있다. 본 연구에서 ARS는 2축의 자이로 각(roll, pitch)과 3축의 가속도계 값(x, y, z)값으로 자세를 계산하도록 하였다. 본 논문은 자율주행시스템인 2발 로봇 시스템으로 간단하지만 원하는 성능을 발휘할 수 있는 ARS와 PID 알고리즘을 이용한 자세 제어를 실현하였다.

차동 구동형 이동 로보트의 위치, 방향 및 속도 궤환 제어 알고리즘 (Position, Orientation, and Velocity Feedback Control Algorithms for Differential-Drive Bobile Robot)

  • 정용욱;박종국
    • 전자공학회논문지S
    • /
    • 제34S권11호
    • /
    • pp.63-72
    • /
    • 1997
  • The design and implementation of a drive wheel position, orientation, and velocity feedback control algorithm for a differential-drive mobile robot is described here. A new concept, the most significant error, is introduced as the control design objective. Drive wheel position, orientation, and velocity feedback control directly minimize the most siginificant error by coordinating the motion of the two drive wheels. The drive wheel position, orientation, and velocity feedback control algorithm is analyzed and experiments are conducted to evaluate its performance. The experimental results are shown that drive wheel position, orientation and velocity feedback control algorithm yields substantially smaller position and orientation errors than those of conventional methods.

  • PDF

이동로봇의 바퀴 속도 제한을 고려한 최대 속도궤적 생성 방법 (Maximum Velocity Trajectory Planning for Mobile Robots Considering Wheel Velocity Limit)

  • 양길진;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.471-476
    • /
    • 2015
  • This paper presents a maximum velocity trajectory planning algorithm for differential mobile robots with wheel velocity constraint to cope with physical limits in the joint space for two-wheeled mobile robots (TMR). In previous research, the convolution operator was able to generate a central velocity that deals with the physical constraints of a mobile robot while considering the heading angles along a smooth curve in terms of time-dependent parameter. However, the velocity could not track the predefined path. An algorithm is proposed to compensate an error that occurs between the actual and driven distance by the velocity of the center of a TMR within a sampling time. The velocity commands in Cartesian space are also converted to actuator commands to drive two wheels. In the case that the actuator commands exceed the maximum velocity the trajectory is redeveloped with the compensated center velocity. The new center velocity is obtained according to the curvature of the path to provide a maximum allowable velocity meaning a time-optimal trajectory. The effectiveness of the algorithm is shown through numerical examples.