• Title/Summary/Keyword: Two-phase motor

Search Result 426, Processing Time 0.024 seconds

Switching Noise Reduction of Induction Motor by a Two-Phase RCD-PWM Technique with Dual Zero Vector Modes (듀얼 영 벡터 모드를 갖는 2상 RCD-PWM기법에 의한 유도 모터의 스위칭 소음저감)

  • Oh Seung-Yeol;Wi Seog-Oh;Jung Young-Gook;Lim Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.525-535
    • /
    • 2004
  • In this paper, a two-phase DZRCD(Dual Zero Vector Modes RCD) technique is proposed to develope the problem of a conventional two-phase RCD-PWM (Random Centered Distribution PWM) which gives the power spectra of narrow band range in the high modulation index (M). In the proposed DZRCD technique, the zero vector $V_0$ is selected as $V_0$(111) for M$\geqq$0.8. Also, $V_0$ is selected as $V_0$(000) for the modulation indices < 0.8. For the unplementation of the proposed method, a 16-bit micro-controller Cl67 was used and the experiments were conducted with the 1.5kw induction motor under no load condition. The experimental results show that the voltage / current spectra is spread to a wide band range, and the switching noise of motor is reduced by the proposed method compared to the conventional random operation.

A Study on the Parameter Identification of a Brushless DC Motor (브러시리스 직류전동기의 파라미터 동정에 관한 연구)

  • 임영철;조경영;정영국;김영민;장영학
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.2
    • /
    • pp.41-50
    • /
    • 1993
  • This paper describes an effort to develop a microcomputer-based parameter identification system for three phase and two phase brushless DC motor. Back EMF equation is derived from back EMF waveform of three phase and two phase brushless DC motor. In this paper, a new identification algorithm for the brushless DC motor parameters by Pasek's technique is developed. It is found that Pasek's equation is valid for the brushless DC motor, too. The results obtained clearly shows that it is possible to implement the identification system for the determination of the brushless DC motor parameters. To minimize errors due to the ripple component in the measured armature current, digital averaging firis employed. The whole identification process of signal generation, measuring, parameter determination is fully automated. The use of the propod method in the parameter identifition system shows that the averaged current curve is in excellent agreement with the estimated current curve. Therefore, this close agreement confirms the validity of this technique.

  • PDF

Fault Detection and Diagnosis of Winding Short in BLDC Motors Based on Fuzzy Similarity

  • Bae, Hyeon;Kim, Sung-Shin;Vachtsevanos, George
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.99-104
    • /
    • 2009
  • The turn-to-turn short is one major fault of the motor faults of BLDC motors and can appear frequently. When the fault happens, the motor can be operated without breakdown, but it is necessary to maintain the motor for continuous working. In past research, several methods have been applied to detect winding faults. The representative approaches have been focusing on current signals, which can give important information to extract features and to detect faults. In this study, current sensors were installed to measure signals for fault detection of BLDC motors. In this study, the Park's vector method was used to extract the features and to isolate the faults from the current measured by sensors. Because this method can consider the three-phase current values, it is useful to detect features from one-phase and three-phase faults. After extracting two-dimensional features, the final feature was generated by using the two-dimensional values using the distance equation. The values were used in fuzzy similarity to isolate the faults. Fuzzy similarity is an available tool to diagnose the fault without model generation and the fault was converted to the percentage value that can be considered as possibility of the fault.

Characteristics Analysis of Short Flux-path 4/3 SRM

  • Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • This paper presents a design and characteristics analysis of novel 2-phase 4/3 switched reluctance motor (SRM) with short flux path for an air-blower application. The desired air-blower is unidirectional application, and requires a wide positive torque region without torque dead-zone. In order to get a wide positive torque region without torque dead-zone during phase commutation, asymmetric inductance characteristic with non-uniform air-gap is considered. The proposed motor could be started at any rotor position with high efficiency drive. The proposed 2-phase 4/3 SRM is verified by finite element method analysis.

Comparison of Converter Topologies for Single Phase Switched Reluctance Motor (단상 SRM용 컨버터 특성비교)

  • Kim, Tae-Hyoung;Seok, Seung-Hun;Liang, Jianing;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.139-142
    • /
    • 2009
  • Comparison of three converter topologies for single phase switched reluctance motor is proposed in this paper. Due to the limitation of do-link voltage, conventional asymmetric converter is difficult to build up enough phase current in the high speed operation. In order to solve this problem, boost converter is used to improve the performance. Two active boost converters are reviewed: one is series-connected type, another is parallel-connected. Otherwise, a novel active boost converter is proposed. The comparison of these converters is based on the voltage raring of capacitor, stability and converter topology. Because the converter selection depends on the motor design, the single phase 6/6 SRM is considered in this paper. Some simulations results are executed. And the results verified the analysis in this paper.

  • PDF

A Study on Comparison of Two phase SRMs (2상 SRM의 비교에 관한 연구)

  • Oh, Seok-Gyu;Lee, Chee-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.59-63
    • /
    • 2011
  • In small-power applications, variable-speed motors having high efficiency and controllability become more dominant than brushed DC motors. BLDC motors with permanent magnets in the rotor and SRMs directed by reluctance torque due to no permanent magnets have been strongly studied as a candidate. Compared to the BLDC motors, SRMs are more suitable for low-cost applications since the magnetic structure is simple, mechanically robust, and cheap due to no additional excitation in the rotor such as copper wire, aluminum, and permanent magnets. In addition, relatively small number of phases in single and two-phase SRMs allows more cost savings with regards to material in the motor and switching devices in the converter. In this paper, several 2 phase SRMs are compared to a 3 phase 6/4 SRM in terms of flux distribution in key parts of the motors.

Efficient Two-Stage Braking Method of Three-Phase Induction Motor (3상 유도전동기의 효율적인 2단 제동 기법)

  • Lee, Eun-Young;Kim, Yong;Kim, Pill-Soo;Kwon, Soon-Do
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.29-36
    • /
    • 1998
  • In this paper, two-stage braking method of 3-phase induction motrois proposed. This brake involves tow stages. The first stage is capacitor self-excitation braking, and the second stage is three-phase magnetic braking. In several applicatons, a low cost and effective brake is required for three-phase induction motor. A mechanical friction brake, typical braking method for induction motor requires external energy sources which is not safe, expensive and requires maintenance. Static and dynamic analyses of the proposed brake scheme are along with analytical result, simulated waveforms and experimental waveforms are compared. The experimental results shows good agreement with the simulated results.

  • PDF

Coordinated Control of an Independent Multi-phase Permanent Magnet-type Transverse Flux Linear Machine Based on Magnetic Levitation

  • Hwang, Seon-Hwan;Kwon, Soon-Kurl;Hwang, Young-Gi;Bang, Deok-Je
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.95-102
    • /
    • 2014
  • This paper proposes a coordinated control for an independent multi-phase transverse flux linear synchronous motor (IM-TFLSM) based on magnetic levitation. The stator structures of the IM-TFLSM are composed of a two set, which has independent three-phase windings and a double-sided air-gap as opposed to the conventional Y-connected three-phase linear motors. A suitable control algorithm is necessary to operate the applied linear machine. This study proposes a coordinated control algorithm for adjusting the mover air-gap and thrust force of the IM-TFLSM in order to maintain air-gap and phase shifted current control of the independent 3-phase modules. In addition, the principle of operation and its special structures are described in detail and the validity and effectiveness of the control algorithm is verified through multiple experimental results.

Bidirectional Motion of the Metal/Ceramic Composit Structure Linear Ultrasonic Motor (금속/세라믹 복합구조 선형 초음파 모터의 양방향 운동)

  • Lee, Jae-Hyung;Park, Tae-Gone;Kim, Myung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.79-82
    • /
    • 2002
  • In this paper, a single phase driven piezoelectric motor design was presented for linear motion. Two metal/ceramic composite actuators, a piezoelectric ring which was bonded to a metal endcap from one side, were used as the active elements of this motor. The motor was composed of a piezoelectric ceramic, a metal ring which has 4 arms, and a guider. Motors with 30.0[mm] and 35.0[mm] diameter were studied by finite element analysis and experiments. As results, the maximum speed of motor was obtained at resonant frequency. When the applied voltage of the motor increased, the speed was increased. Also, bidirectional motion of the motor was achieved by combining two motors which have different resonant frequency.

  • PDF

A Study on the Micro Stepping Drive to Reduce Vibration of Step Motor (스텝모터의 진동 저감을 위한 마이크로 스텝 구동에 관한 연구)

  • Shin, Gyu-beom;Lee, Jeong-Woo.;Oh, Jun-Ho.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.118-127
    • /
    • 1997
  • In this study, We use microstep control to reduce vibration of step motor. Microstep control of step motor is usually thought of as an extension of conventional step motor control technology. The essence of micro stepping is that we divide the full step of a step motor into a number of substep called microstep and cause the stepmotor to move through a substep per input pulse. In ideal case, by controlling the individual phase currents of a two-phase step motor sinusoidally we can get uniform torque and step angle. But due to the nonlinear characteristics of the step motor, we need to compensate current waveform to improve the over-all smoothness of the conventional micro stepping system. We implement digital Pulse Width Modul- ation (PWM) driver to drive step motor and microphone was used for detecting vibration. Driver enables speed change automatically by increasing or decreasing micro stepping ratio which we call Automatic Switching on the Fly. To compensate the torque harmonics, neural network is applied to the system and we found compensated optimal input current waveform. Finally we can get smooth motion of step motor in a wide range of motor speed.

  • PDF