• Title/Summary/Keyword: Two-phase inverter

Search Result 326, Processing Time 0.024 seconds

A Study on 3-Phase Balance of Offshore Wind Generator with Dual Inverter System (2중 인버터 시스템을 갖는 해상용 풍력발전기의 3상 평형성에 관한 연구)

  • Seo, Jangho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.23-30
    • /
    • 2013
  • This paper shows the method of winding connection and the balance of three phase of dual inverter systems used for offshore wind power generator. In order to satisfy low cost manufacturing of large scaled wind generator, the number of slot per pole per phase should be reduced. For this reason, in this research, the number is selected as '1' which is the minimum number that stator can have. Based on the prototype machine, three types of machine for the analysis are selected, and various performances especially in terms of electrically balanced condition are also investigated. Moreover, in this paper, new inductance modeling of dual 3-phase considering cross-coupling between two inverter systems is proposed. The several inductances such as mutual-, synchronous inductances are studied. By using FEA, based on calculated the flux linkage of d and q-axis, the validity of the proposed inductance modeling is confirmed.

DC-Link Voltage Unbalancing Compensation of Four-Switch Inverter for Three-Phase BLDC Motor Drive (3상 BLDC 전동기 구동을 위한 4-스위치 인버터의 DC-Link 전압 불평형 보상)

  • Park, Sang-Hoon;Yoon, Yong-Ho;Lee, Byoung-Kuk;Lee, Su-Won;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.391-396
    • /
    • 2009
  • In this paper, a control algorithm for DC-Link voltage unbalancing compensation of a four-switch inverter for a three-phase BLDC motor drive is proposed. Compared with a conventional six-switch inverter, the split source of the four-switch inverter can be obtained by splitting DC-link capacitor into two capacitors to drive the three phase BLDC motor. The voltages across each of two capacitors are not always equal in steady state because of the unbalance in the impedance of the DC-link capacitors $C_1$ and $C_2$ or the variable current flowed into the capacitor's neutral point in motor control. Despite the unbalance, if the BLDC motor may be run for a long time the voltage across one of the capacitors is more increased. So the unbalance in the capacitors voltages will be accelerated. As a result, The current ripple and torque ripple is increased due to the fluctuation of input current which flows into 3-phase BLDC motor. According to that, the vibration of motor will be increased and the whole system will be instable. This paper presents a control algorithm for DC-Link voltage unbalancing compensation. The sampling from the voltages across each of two capacitors is used to perform the voltage control of DC-Link by using the feedforward controller.

A Study on the MPPT Control Method for Grid-connected Multi-String Three-Phase Three-Level PV Inverter (계통연계형 멀티스트링 3상 3레벨 태양광 인버터의 MPPT 제어방법에 관한 연구)

  • Kim, Jinsoo;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.43-48
    • /
    • 2014
  • Two-level inverter has some disadvantages like high harmonics contained in the output current, efficiency limit and stress to switching device as IGBT and FET. Many researches have reported multi-level inverter to complement two-level inverter of problems. In this paper, we suggest MPPT algorithm of multi-string three-level solar inverter that considered nowadays. We added midpoint controller in order to implement the MPPT algorithm because the three-level inverter has to need midpoint controller and procured the stability of direct current link. We verify the superiority of multi-string T-Type inverter and the algorithm we suggested with solar irradiance variation experiment and MPPT efficiency measurement. The MPPT efficiency was confirmed with a high efficiency more than 99.97%.

Development of AC Electric Vehicle Propulsion System (Converter/Inverter) using IPM Switching Device (IPM 스위칭 소자를 적용한 AC 전동차 추진제어장치 (Converter/Inverter) 개발)

  • Kno Ae-Sook;Kim Tae-Yun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.233-240
    • /
    • 2005
  • In this paper, AC electric vehicle propulsion system(Converter/Inverter) using high power semiconductor, IPM is proposed. 2-Parallel operation of two PWM converter is adopted for increasing capacity of system and the harmonic content is eliminated by the phase shaft between two PWM converters switching phase. VVVF inverter control is used a mixed control algorithm, where the vector control strategy at low speed region and slip-frequency control strategy at high speed region. The proposed propulsion system is verified by experimental results with a 1,350kW converter and 1,100kVA inverter with four 210kW traction motors.

Drive Characteristics Using Resonant Frequency of a Ring Type Ultrasonic Motor

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Cherl-Jin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.173-178
    • /
    • 2003
  • The rotational force of ultrasonic motors is able to get from the frictional force of elliptical vibration by contact between rotor and stator. Generally, ultrasonic motors are suitable for driving at resonant frequencies of about 20∼80[KHz]. The driving characteristics of ring type ultrasonic motors are the object of this study. A two-phase driving signal is delivered to the tested ultrasonic motor, which has a $90^0$ phase difference respectively with both sine and cosine voltage waveforms. The driving frequency is almost equal to the mechanical resonant frequency for the proper operation, and the driving signal is supplied by the two-phase parallel resonant inverter. The validity of the proposed driving method is verified by experimental results with stable operation.

A Novel Control Algorithm of a Three-phase Four-wire PV Inverter with Imbalance Load Compensation Function

  • Le, Dinh-Vuong;Kim, Chang-Soon;Go, Byeong-Soo;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1131-1137
    • /
    • 2018
  • In this paper, the authors suggest a new control algorithm for a three-phase four-wire photovoltaic (PV) inverter with imbalance load compensation function using conventional proportional-integral (PI) controllers. The maximum power of PV panel is calculated by the MPPT control loop. The reference varying signals of current controllers are transformed to two different rotating frames where they become constant signals. Then simple PI controllers are applied to achieve zero steady-state error of the controllers. The proposed control algorithm are modeled and simulated with imbalance load configuration to verify its performance. The simulation results show that the maximum PV power is transferred to the grid and the imbalance power is compensated successfully by the proposed control algorithm. The inverter has a fast response (~4 cycles) during the transient period. The proposed control algorithm can be effectively utilized to the three-phase four-wire inverter with imbalance load compensation function.

Digital Control of a Single-Phase UPS Inverter for Robust AC-Voltage Tracking

  • Woo Young-Tae;Kim Young-Chol
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.620-630
    • /
    • 2005
  • This paper presents a digital controller for a single phase UPS inverter under two main considerations: (i) the overall system shall keep very low AC-voltage tracking error as well as no phase delay over different load conditions, and (ii) the digital controller shall be employed at a fixed sampling time. We propose that the former can be achieved by the proposed controller using the error-state approach and the latter can be dealt with by the socalled characteristics ration assignment.

Phase Angle Control in Resonant Inverters with Pulse Phase Modulation

  • Ye, Zhongming;Jain, Praveen;Sen, Paresh
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.332-344
    • /
    • 2008
  • High frequency AC (HFAC) power distribution systems delivering power through a high frequency AC link with sinusoidal voltage have the advantages of simple structure and high efficiency. In a multiple module system, where multiple resonant inverters are paralleled to the high frequency AC bus through connection inductors, it is necessary for the output voltage phase angles of the inverters be controlled so that the circulating current among the inverters be minimized. However, the phase angle of the resonant inverters output voltage can not be controlled with conventional phase shift modulation or pulse width modulation. The phase angle is a function of both the phase of the gating signals and the impedance of the resonant tank. In this paper, we proposed a pulse phase modulation (PPM) concept for the resonant inverters, so that the phase angle of the output voltage can be regulated. The PPM can be used to minimize the circulating current between the resonant inverters. The mechanisms of the phase angle control and the PPM were explained. The small signal model of a PPM controlled half-bridge resonant inverter was analyzed. The concept was verified in a half bridge resonant inverter with a series-parallel resonant tank. An HFAC power distribution system with two resonant inverters connected in parallel to a 500kHz, 28V AC bus was presented to demonstrate the applicability of the concept in a high frequency power distribution system.

Phase-Shift Full-Bridge DC/DC Converter with Fixed-Phase Operation Inverter (고정 위상 동작 인버터를 포함하는 위상천이 풀 브리지 DC/DC 컨버터)

  • Kim, Jin-Ho;Park, Jae-Sung;Kim, Hong-Kwon;Park, Jun-Woo;Shin, Yong-Saeng;Ji, Sang-Keun;Cho, Sang-Ho;Roh, Chung-Wook;Hong, Sung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • In this paper, the phase-shift full-bridge DC/DC converter with fixed-phase operation inverter is proposed. The proposed circuit consists of two full-bridge inverters which are connected in parallel. While one full-bridge inverter operates as the fixed-phase, it regulates the output voltage by adjusting the phase of the other inverter. During the normal operation period, the proposed circuit makes the less amount of conduction loss of the primary switches and secondary synchronous rectifiers, as well as the less amount of the current ripple of the output inductor, than the conventional phase-shift full-bridge DC/DC converter does. Also, it achieves high efficiency by reducing the snubber loss of the secondary synchronous rectifier. To sum up, the present inquiry analyzes the theoretical characteristics of the proposed circuit, and shows the experimental results from a prototype for 450W power supply.

A High-efficiency Buck-boost Half-bridge Inverter for Single-phase Photovoltaic Generation (단상 태양광 발전용 고효율 벅부스트 하프브리지 인버터)

  • Hyung-Min Ryu
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.450-455
    • /
    • 2023
  • Among single-phase photovoltaic inverters that can avoid excessive leakage current caused by the large parasitic capacitance of photovoltaic panels, a boost converter followed by a half-bridge inverter is the simplest and has the smallest leakage current. However, due to the high DC-link voltage, the rated voltage of the switching devices is high and the switching loss is large. This paper proposes a new circuit topology which can operate as a buck-boost inverter by adding two bidirectional switches to the output side of the half-bridge inverter instead of removing the boost converter. By reducing two stages of power conversion through the high-voltage DC-link to one stage, power loss can be reduced without increasing costs and leakage current. The feasibility of the proposed circuit topology is verified by computer simulation and power loss calculation.