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Digital Control of a Single-Phase UPS Inverter
for Robust AC-Voltage Tracking

Young-Tae Woo and Young-Chol Kim*

Abstract: This paper presents a digital controller for a single phase UPS inverter under two
main considerations: (i) the overall system shall keep very low AC-voltage tracking error as
well as no phase delay over different load conditions, and (ii) the digital controller shall be
employed at a fixed sampling time. We propose that the former can be achieved by the
proposed controller using the error-state approach and the latter can be dealt with by the so-

called characteristic ratio assignment.
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1. INTRODUCTION

In all UPS inverters, the goal is to maintain the
desired output waveform with fast response and low
total harmonic distortion (THD) over all loading
conditions. This means that the UPS controller should
work to properly maintain the sinusoidal waveform of
output voltage even when the load changes abruptly.
Basically, the THD is controlled by a L-C filter. In
addition to this low pass filter, a feedback controller
with good tracking performance can cause the THD to
be further reduced.

The inverter systems with feedback controller are
generally constructed in the form of either state
feedback or double-loop feedback. The latter consists
of a current-feedback loop as an inner loop and a
voltage-feedback loop as an outer loop. Each loop has
its own compensator. One of the most difficult
problems associated with this control structure arises
from the fact that the two loops are closely
interconnected. Another problem may occur with a
fixed sampling time when a digital controller is used.

It is well known that for a digital controller
determined by the emulation method, a low sampling
rate has been a constraint. As a result, one cannot
make the speed of response faster than a certain value.
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In many cases, the digital controller for a UPS inverter
must be designed under a given specified sampling
time because of cost constraints. Also, the sampling
time is limited by the switching frequency of the
PWM inverter. Digital controllers incorporating various
forms of state feedback have been developed [1-3].

In this paper, a digital controller for a single phase
UPS inverter using the error-space approach is
presented. The specifications to be satisfied are a
THD less than 5%, a small overshoot in response to
an abrupt load change (e.g., the case of a full load
applied from a no load state at the peak phase of
output voltage), and a fast step response. The
performance of the resulting system is evaluated
under the following three load conditions: no load, a
resistive load of 10kW, and a nonlinear rectifier load
of 10kW.

We first design a continuous-time controller for a
continuous-time plant and then make the discretization
of the controller with the given sampling time of 8kHz.
The disadvantage of this method is that its fidelity
depends on the sampling rate and on the discretization
method. But it has a big advantage in that one can
apply sufficient design methods developed for
continuous-time linear systems. In this paper, we will
employ the error-state feedback control scheme to
carry out the robust AC-voltage tracking. The error-
space approach [5] is an analytic state-feedback
method to give a controller the ability to perfectly
track a non-decaying input and to reject a non-
decaying disturbance such as a sinusoidal input. Since
this method solves the control problem in an error
space, we are assured that the error approaches zero
even if some parameters change. As shown in Section
3, the structure of this controller includes the internal
model in the outer loop and the state feedback
controller in the inner loop. However, when the
configuration is transformed into a digital controller,
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we are faced with the problem that the controller to be
designed must meet not only the stability of the
overall system but also that the response speed of the
inner loop must be slower by at least 5~10 times that
of the fixed sampling time. We will suggest a method
to deal with this problem.

On the other hand, we introduce the characteristic
ratio assignment (CRA) to achieve the time response
requirements. It has been shown in [4-5] that the CRA
has the ability to deal directly with the overshoot and
speed of step response of an all-pole system of
arbitrary order. The method is based on certain
relationships  between characteristic  polynomial
coefficients and transient responses. The CRA design
formulates a model matching problem whose
reference model is selected from a target polynomial.
In our approach, the state feedback gains are
determined by the CRA instead of the pole-placement
method. Finally, the proposed method is evaluated
using simulation results generated by Sim-power
System Toolbox 3.0 from Simulink®.

2. UPS INVERTER MODEL AND
PRELIMINARIES OF CRA

In this section, we describe the state-space model of
a UPS inverter. Also some basic preliminaries of the
CRA are given.

2.1. AUPS inverter model

Fig. 1 shows the simple configuration of a UPS
inverter. In order to develop the model of this plant,
we consider the following state variables: the

capacitor current, i, , and the capacitor voltage, v, .
The variables V,.,i;, i,, V,and Q,denote DC-link

voltage and current, inductor current, inverter output
voltage, and IGBT switching elements, respectively.
Then we have the following state-space model:

. R 1 1 . Ry

x1=——j;x1—L—X2 +L_va_(lO+L_flO)’ (])

. 1

2T .
S

y=v, @

Fig. 1. UPS inverter system.

where x =i, X, =v,.
Rewriting (1) ~ (3) in vector form, the plant model
becomes

A1)
Ly Ly — 17 .
i=| T e Ly | |G ) @)
1 0 Ly
Cr
=Fx+ Gu+Gw,
y=Hx=[0 1]x, (5)
T L, Ry
where x :[xl x2]a uU=v,, W:lo+_L_ZO'
!

2.2. Preliminaries of CRA
Consider a linear system whose transfer function is

_n(s) _ b,s"+ bm_lsm_1 +---hy

G(s) . (6)
P8 as"+a, 5"+ +a
The characteristic ratios are defined as
2 2 2
a a a;_
al - 1 ) O~ = 2 , e, a}’l—l = -1 (7)
apay aq1a3 ay 24y
and the generalized time constant is defined to be
a
r=1 (8)

Ay

Conversely, the coefficients a; of &(s) can be

represented in terms of ;' sand 7 as follows: for

any dag,
ap =ayt, (9)
i
agT .
a; = T for i=2,---,n.(10)

2 3
QK203 0y O

Let us define a polynomial whose coefficients are
generated by using (9), (10) with arbitrarily chosen
positive parameters gy, ¢ and the characteristic ratios

a; s obeying the following formula:

B a>2, (11)
. . /
(i) :sm( kfr/'n Y+sin{ 7/n )-a Ty,
2sin( kz/n )
for k=2,---,n—1. (12)

We call this polynomial as the K-polynomial here. It is
important to note that the K-polynomial is generated

by only «; foragiven 7 and q. It is easy to see
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that (12) holds the following relations.

@ o =a,,, for k=12,---,(m-1),

(i) ap > a4, for k=1,2,---,(m-2),
where n=2m evenand n=2m-1 odd.

Now we give a brief summary about what
relationship between (¢;,7) and time response is.

The time constant is an important parameter since it
determines the speed of the response. Although the
definition of time constant is clear for the case of 1st
order systems, the precise definition is not known
when multiple time constants are present. Due to this
unknown relationship between multiple time constants
and the time response, it is difficult to achieve a
desired speed of response when higher order transfer
functions are involved.

The following Theorem 1 states that the speed of
the response of a linear all pole system can be
controlled, while maintaining the exact shape of the
response, by adjusting the value of 7 (or ratio of the
two lowest order coefficients of the denominator
polynomial) if its characteristic ratios can be kept the
same. We call this 7 the generalized time constant.

Theorem 1[4]: Consider two all pole transfer
functions of the same degree Hi(s), Ha(s), of which
the generalized time constants are 7; and 7, ,

respectively. Let y{(7) be the step response of Hys).
Then

T
yi0)=yp(=--1) (13)
)
if and only if both H(s) and Hx(s) share the same
characteristic ratios.

For a given all pole system with its generalized
time constant, the above can be used to determine a
new generalized time constant that provides the
desired speed of the response while maintaining the
exact shape of the response. This property holds on
the case of general transfer function having numerator
polynomial.

Although the analytical relationships between
damping and characteristic ratio are not yet known,
the depeéndency can be explained by using the
Kessler’s multiple loop structure [8]. For the purpose
of this discussion, let us consider the 2-loop system
shown in Fig. 2.

R+ 1 Uy + 1 U 1 Y
7,5 7,8 1+,

[

Fig. 2. Kessler’s 2 loop structure.

( 7, -

The transfer function of the overall system is
3 1
1+ 7181+ 755(1 + 735)]
1

112'2‘[333 + rlrzsz +rps +1

T(s)
(14)

According to (7), the characteristic ratios of T (s)are

T T
o =—1, (2% =2 (15)
T 73

Now, we consider the dynamics of the inner loop
system. Its transfer function and the characteristic
ratio are as follows:

1 B 1
1+ 798(1 + 735) rzr3s2 +7p8+1 ’

Ti(s) =

— _72_
73

Secondly, if we assume that with 7>, >3,
T'(s) can be approximated as follows:

1 1
T(s)= = =Ty(s),
1+ 7151+ 7,5) rlr2s2 +1s+1
then the characteristic ratio of T (s) becomes
&1 = El_ =0q. (17)

]

Furthermore, it is easily seen that the damping ratio of
Ve
2

the all-pole system of arbitrary order is also developed
in the same manner, we can say from (16) and (17)
that the characteristic ratio of an all-pole system is
closely related to the damping.

The K-polynomial has very interesting properties.
To begin with, recall that for fixed g, and z, the

a second-order system is identical to ¢ = . Since

polynomial can be composed by only a characteristic
ratio ¢;. In [4], they have showed that the all pole
system Hg(s)whose denominator is the K-polynomial

guarantees the stability and that its frequency
magnitude function is monotonically decreasing.

Furthermore, we represent that the o can be a
single parameter that allows to adjust the damping of
a polynomial. It shows that the damping of K-
polynomial shall be increased as o increases. In
other words, if we make an all pole transfer function
using K-polynomial, the system gives rise to smaller
overshoot as ¢ increases. Fig. 3 shows that the
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maximum overshoots of Hg(s) with n=34,---,8
monotonically decrease with respect to ¢ . Fig. 4
shows the root locus of a K-polynomial with respect

Maxierum Overshool(%)

4 T g ——

joo
)
i

-2+

-ab

oL

L i L 1 it 1
-29 -13 -16 -4 =12 10 -8 -6 -4 -2 0
o

Fig. 4. Root locus of a K-polynomial w.r.t. ¢ .

Table 1. «;'s and poles of Hg(s) resulting in non-
overshoot (where 7=1).

n| a=lo o a, ] Roots
22836,
3 [2.836  2.836] —2.604+1.124i
Z4.984 +1.456]
4l . . ’
2646 2259 2656] | oo )
~7.686+2.137i
5 |[2.538 2.053 2.053 2.538] ~5.209,
327740911
—11.01+2.89
[2.464 1.943 1.848 01:+2.89%,
6 Lo43 2464 | 522.75633,
T2 £ 3.602 + 0.945
—149+3.72i
[2.411 1.874 1742 14.9%3.721,
7 1.742 1.874 2.411] —-10.53,-7.87,
5 1815 2. ~5.88,-3.91+0.98i
1935+ 4.62i
o | [2371831.68164 ~14.02,-10.8,
1.68 1.83 2.37] ~7.97,-6.14,
—421+1.005i

to ¢ . Using this property of K-polynomial, it is very
useful to obtain the all pole system of which step
response has no overshoot.

In Table 1, the ¢, of various Hx(s) to have non-

overshooting step response are given. The pole
locations corresponding to the «; are also included
in the Table 1.

3. DESIGN OF A DIGITAL CONTROLLER
FOR ROBUST AC-VOLTAGE TRACKING

Suppose that we want to design a controller for the
UPS plant described in (4) and (5) so that the closed-
loop system will have a good time response that is as
fast as possible, while the controller has the ability to
track a sine-wave command and reject non-decaying
disturbances. For this purpose, the etror-space
approach is used. Fig. 5 shows a control structure of
which the details are presented later in (33)~(35).

The controller consists of two parts. The first part
(see box A in Fig. 5) is the state-feedback controller
which mainly controls the current loop. We will take
the time response requirement and limitation due to
sample time into consideration when the feedback
gain K, is determined.

The details of box A are shown in Fig. 6. The
second part (box B in Fig. 5) plays a role in
eliminating the tracking error. This is sometimes
called the “Internal Model Principle.” We first
formulate the mathematical relations of the error-

space model. Since the reference signal v, is

sinusoidal of frequency wq[rad/sec], it follows that

@=

Fig. 6. Detailed diagram of box A.
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V. +apv. =0 (18)
The tracking error is defined as

e::v:—vc=v:—y. 19
Then we can write the error in terms of the state

é+wfe= —[Hx' + ngx] . (20)

Here, a new state vector and the control input in error
space are defined as follows:

E=¥+oix, (1)
U :=u+a)3u. (22)
With these definitions, it is easy to derive the relations

E=FE+Gu, (23)
é+wpe=-HE. (24)

Thus, the overall system in error space can be
described in standard state equation form

z=Az+Bu, (25)
— . T T
where z=|e ¢ &' |, 26)
0 1 0 0
A=|-w3 0 -H|, B=|0]|. 7
0 0 F G

Assume that {4, B} is controllable. Therefore, there
exists a control law,

ﬂ=—[k1 ky ks k4],

It is noted that if (28) stabilizes the closed-loop
system, all states z become zero as time goes to
infinity. In other words, the controller achieves perfect
tracking. Substituting (28) into (25), the characteristic
equation is given by

z=-Kz. (28)

A(s)=|sT-4, =5 L e 1R
Ly L/

+{L(_1-+k_)+ }2
Cr Ly Ly

k
L C o(——+L3 )jl
7 f f

29

4

+a3s +a2s +as+ag.

3.1. Implementation of control law
To implement the control law (28), it needs to be
expressed in terms of e and u. From (21), (22) and (28),

p=ii+opu =—ke—kyé - k& —kyl, (30)

= —kje — kyé — ks 3y + 02x)) — kg 3y + 02 %5).
Furthermore, (24) can be concisely expressed by
fi+win = —ke-kyé, G1)

where 77 =u+k3x +kyx, . (32)
If we define 7(s) =5~ [~kpe(s) +m(s)] and 7,(s) =

77(s) , we have

[7:71}:{0 —wﬁ}[m}{—h}’ 33)
m| (1 0 |m] |k

n=[0 1] [m}_ (34)

h

(33) and (34) are depicted by the box B in Fig. 5.
From (32), !

u=1-kyx —kyxy =17~ Kox, 35)

where K =[k3 k4] .Box Ain Fig. 5 depicts (35).

3.2. Determination of controller gain K

Now, the remaining problem is to obtain the
controller gain K that achieves the stability and the
desired time response. As mentioned earlier, when one
designs a digital controller by means of the emulation
method, the transient response rate should be taken
into account. Otherwise, the stability may be lost
when the response speed is so fast that sufficient data
cannot be gathered.

It may be possible to attempt to design a controller
using the pole placement method on the overall
characteristic equation, such as (29). Then the resulting
continuous-time controller would be converted into a
discrete-time one. If this procedure is pursued, what
problem will arise? In fact, the most difficult problem
of all is that there is no rule to select the proper pole
locations so that the time response of the inner loop
shall be not faster than a fixed sample period. It is also
noted that the controller using the error space method
guarantees robustly perfect tracking to a nondecaying
reference input only if its characteristic equation (29)
is stable. This implies that an ad-hoc method such as
the two-time scale is not necessary when K is
designed. In this paper, the design procedure is
divided into two steps. First, K, is determined such
that the time response of the inner loop has the
settling time of 15~20 times the sampling period. This
step is performed by the CRA. Secondly, after K is
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obtained, we try to find a [k k] so that the

overall system with the given Kj is stable and has a
good transient response. The second step is also
carried out using the CRA.

Let’s go to the first step. From (4) and (5), the UPS
plant is

x = Fx+Gu+Gw,

36
J=H, (36)
and the control input is
u=1p —kyxy —kyxy (37)

=772 +u2a

where u, = —kyx; —k,x, . Combining (36) and (37),
we get
x=Fx+G(npy +uy)+ Gw
=Fx+Guy, + Gy + Giw (38)
=|F-GK,|x+Gn, +Gw,
y=Hx.

Withw =0, the transfer function of (38) is given by

1
_ s L,Cy (39)
e (s) R, &k ko +1°
£ PO e AL P

Ly Ly LyCy

Next we set the target polynomial for the inner loop to
A (5)=5" + 55+ 5y (40)

If we select the proper target polynomial, it is obvious
that K, will be obtained uniquely. That is, we have

k3 :Lf6i1 _Rf’ (41)
k4 :Lfo5i0 —]. (42)

Since (39) is merely of order 2, the target polynomial
(40) can be easily determined by the pole placement
method. Here in order to propose a unified approach
the CRA is employed. Then (40) can be easily found
by choosing ¢ andz, which are defined in section
2.2

on=—, 51'0:_1' (43)

In particular, since the settling time can be exactly
controlled by the value of z while «;is fixed, the
response rate is easily dealt with. The characteristic
ratios, ¢; s are closely related to the damping and

the stability. The details related to the selection of «;

and 7 are referred to [4,5,7].
Next, we will find[k; k,]. This gain will also be

determined by the CRA. Similar to the previous step,
we choose a fourth-order target polynomial

AZ(S) st 4 5353 + §2s2 + 015+ 5pS . (44)

However, we see from (29) that where [k3 k4] is
given, the characteristic polynomial coefficients a,
and a; are already known. Thus, we cannot assign
all @, s and 7 independently. For this case, we

suggest a guide of selecting oy, @, and 7 as
follows:
(i) &3 and J,should be the same as a; and ay,

respectively. Therefore, ¢ is given a priori.
(i) Select
calculate &, using Jd5,0, and ay:

«, approximately larger than 2. Then

52
85 = 2
53a, -
(iii) We take no account of 7 but selectan o4 >2.5.

Calculate ¢, usingonly o as follows:

e

Sy = .
0 %!

By comparing (29) with (44), [k, ky]is determined.
If the resulting performance is unsatisfactory, then
change «,and ¢y and repeat the above procedure.

3.3. Digitization of continuous-time controller

Finally, in order to obtain the digital controller, we
apply a discretization method such as the Tustin
approximation to the continuous-time controller. A
discrete state space representation of (33) and (34) can
be written as follows:

70k +1) = Apr(k) + Bpe(k), (45)
n(k) = Cpi(k) + Dpe(k), (46)

where 7(k)=[m(k) m (k)]T. If we let the sample

variables of x;(f) and x,(¢) be x(k) and x,(k) ,

respectively, the discrete time controller correspond-
ing to (35) becomes

u(k) =1(k) - kyx (k) — k4x, (k). 47

Remark 1: The digital control output u(k)in (47)

depends on the input at the same time point. It may be
desirable to derive a digital control law that would
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only require inputs from the previous time. It is
unusual for such a control law to be considered in the
state space method. However, if we design a digital
controller in compensator form, the time delay due to
ZOH and computation can be associated with the
input actuator. An example for this case will be shown
in Section 4.

4. SIMULATION RESULTS

To evaluate the performance of the proposed
controller, simulations are carried out using Simulink®.
The system parameters considered for the simulations
are given in Table 2.

Table 2. System parameters.

When Kj is determined, we have selected o =2.6
and 7=0.41667msec . Following the steps in section
3.2, the control gains of inner loop were determined to
be

[k3 k4]=[1.1680 -0.6406].

By choosing[a; a,]=[2.5 2], we obtain

[k ky]=[-1.61900 —418.2497].

Converting (33) and (34) using Tustin’s method into
(45) and (46), we have

-17.75543072386747

0.00012493064285 0.99889028557976}
158093.334662581

D{ 428.130485686 }

Cp =[0.0000000078081 0.0001249306428],

Dy =[0.02675815535535] .

{0.99889028557976
D =

The digital controller designed has been examined
by using Simulink®. The most important requirements
for a high performance UPS are the THD less than 5%
and a fast response with little overshoot over all kinds
of loading conditions. For the sake of the performance
evaluations, we have considered three load conditions:
no load, a resistive load of 10kW, and a nonlinear
rectifier load of 10kW. In each case, the THD was

System parameters Values
Filter inductance (L) 200[uH]
Filter Filter resistance (R f) 0.08[2]
Filter capacitance (C) 120[ uF]
Input voltage (v, (7)) +150[V]
DC-link (vg.) 270[V]
IGBT’s switching frequency (fyicn) | 8[kHz]
Sampling frequency (f;) 8[kHz]
‘ |—> > 1GBT scoped
5 1_i:|_2 :] > 1_|:/=:r2 1 .
& L1 ‘i:‘_Z »- 2 1_1::'_2 fonum Series RLC Branch1
e m 4wl m——
JT_ =

¥ ITHD

r

I

Zero-Order
Hold

Leied +
e(k) )
Signal

Generator

Digital Controller

¥y

il

Output signal

Total Harmenic

noT |Logical Distorsion2
Qperator

{signal THO

Comparator Scope input signal

=

Total Harmonic

Trangtuar Signal Distorsion?

Total Scopez

13

Fole

\J-‘

Total Scopet

Fig. 7. UPS inverter system with the proposed controller.
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evaluated. Fig. 7 shows the UPS inverter system with
the proposed controller, where the parameters of

IGBT used are as follows:

Initial state: open, R, pp.r =0.1[Q],
R,, =0.01[Q], C,,pper =0.22[LF].

200

) ‘

100} f i 1
% 50 i L !
. .

-100 |

-150

-200 L ! L L L

u] 0.0 0.02 0.03 0.04 0.08 0.08

Time(sec)

Fig. 8. Output response under no load.

200

150 +
100 -

50 H

U=.

Magnitude(V)

ol !

-100 /

aso Ve (t)

-200 L L L HE— L
0 0.01 0.02 0.03 + 004 0.0s8
Time(sec)

0.08

Fig. 9. Output response under a linear load change.

627

Fig. 8 shows the output response of the UPS system
under no load condition. It is seen that the proposed
controller tracks the reference signal with very low
tracking error. The THD of the response was about
3.99%.

Fig. 9 shows the output response for the case of a
10kW resistive load that is abruptly applied at the
peak phase (around? = 0.037sec ). This is to examine
how large the overshoot occurs at the extreme
condition and how fast the controller responds. We see
from Fig. 9 that the maximum overshoot was about
50% and the step change has been settled down within
half a period. In this case, the THD shows about
4.13%.

For the third load condition, we have considered a
rectifier load which has nonlinear characteristics. Fig.
10 shows the block of the rectifier load constructed
for the simulation. The rectifier parameters are as
follows:

Ry, =0.22784[Q], R0, = 0.01[Q],

Ligad = W[H], Ryioge =10[€2], Cppgq = 50420[uF ],

Caiode = 0.0 uF 1, Ripgq = 10.9[Q2].

As shown in Fig. 11, the current characteristics
have a very high crest factor signifying highly
nonlinear load. In Fig. 12, the output response and
reference voltage are shown. The rectifier load was
abruptly applied at the peak phase of reference voltage
(around r=0.037sec ). As a result, the tracking
performance seems to be acceptable but the THD,
which was about 12.04%, does not meet the
specifications. In conclusion, it has been shown that in
all the cases the proposed controller has satisfactory
tracking and time response performances.

‘—, (I
i io_outi

i pl ] .
™ - -+
io_out & ol
Series RLC Branchz
E = E
— Diode %[;1 Diode? ZE[h i
1 m m il
k4 " 4 4 k4 e
"
L bl
Series RLC Branch _ Ve
_1 - I ~ Skries RLC Brapch!
Load C
A F
rat o
= S E -
@: [ Diode ZEI:] Dinde3 ZE[:]
Out1 Vo scope ud s
. P Y F Y
<4
e |
P+ o scope
wl. vP
Ll
Vo 2

Fig. 10. Nonlinear rectifier load.
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o B

Magnitude(A)

-100 L L L ' L s L o
0375 038 038 032 03% 04 0405 041 0OM5
Time(sec)

Fig. 11. Current waveform of rectifier load.
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Magnitude(v)
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L
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Fig. 12. Output response under a nonlinear load change.

.. v 06
@ g_b,_l_l,g,{g{g,}_: I
- Ad' - Bﬁi Cd }?1 Gd T
I e L)
L2
) v, )
L4

Fig. 13. Block diagram of UPS system with PI and.

In addition, to compare the performance of the
proposed controller with the conventional method,
another example performed on a cascade control
structure is given. Fig. 13 shows its block diagram in
which PI and first-order controllers are occupied. In
particular, a rational transfer function C, /C; is
inserted in front of the plant to compensate the time
delay T, that arises from the zero order hold (ZOH)
(which is about 7,/2) and the delayed computer output
of the controller by one sample time 7j.

i_blS'l'bO
Ad S ’

PI controller:

: B

First-order controller: —2 = 4157 % ,
Bd s+ az

L 1 _1

b Gd Cfs >

Pade approximation of time delay due to ZOH and

L-C filter: i =
Pd LfS + Rf

C, 1-Tys/2
Cd 1+T PR /2
Herein, the values of plant parameters are the same as

those in Table 2. The transfer function of the closed-
loop system is given by

computation: ATy =T,/2 +T,).

Ve(s) _ n(s) “®)
Vo) p(s)’
where
n(s)=C,, (49)

K8)=G,P,B,C,4,+G,4,C.B,+C,4, +B,C,A,
_3GLL $ +[ 3G La =3Cfo”27; +3CfRf7; e Lf}4

4 4 4 4

3C,Ta, 3T 3R aT
ST s 2 3
+ 2 +CfRf +—4—+(:fo

375, 37,
- + ‘= +a, 545,
4 ]S (bl 4 @ o

Next, we set the target polynomial of the overall
system. In Section 2.2, it is shown that the polynomial
can be generated by using (9) and (10) with holding
conditions of (11) and (12). Here, by selecting
ay=231%10", & =2.8 and 7=1 [ms], we have
the target polynomial

+(sz1l -

L,
+(CfRfa2 +1 ,= 4 +Caq

P ()=225%10"2 & + 9.05%10°8 §*
+1.3%103 8% + 8252 (50)
+231x10% s + 2.31x107.

Then the gains of continuous-time controller have
been determined from the algebraic relation between

p(s) and p*(s) as follows:

[ay a ap by by]=[4.15x10% 2.47 1.19x10*
- 1.63x10* 2.31x107].
Applying digitization by the Tustin approximation

to the designed continuous-time controller, the digital
controller is given by

0.9z +0.48
Ci(z)=—2—12 51
=" (1)
~0.262% +0.05z + 0.31
Cy(z)=— . (52)
z°-0.56z—-0.44

Fig. 14 shows the digital controllers implemented
by means of the Simulink®. Also, Fig. 15 presents the
output response under a linear load change. The THD
of the response was about 4.47%. It is also shown that
the PI and first-order controllers have a fast transient
response and relatively small overshoot over a linear
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Fig. 14. Digital PI and First-order controllers.
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Fig. 15. Output response under a linear load change.

load change. On the contrary it cannot evade the phase
delay and steady-state error due to the type of the

reference input v*(t). To eliminate those effects, a

compensator like notch-filter or IMC controller may
be used in the outer-loop additionally.

Thus, we can conclude that the error-space
approach is preferable to the conventional method in
the sense that the former has an ability to robustly
track the reference signal with a relatively lower-order
controller.

5. CONCLUSIONS

For the design of a digital controller for a UPS
inverter that should have robust AC-voltage tracking
ability, a design method based on the error-state
approach and the characteristic ratio assignment has
been proposed. The error state approach ensures
asymptotically perfect tracking only if the closed-loop
system remains stable. It turns out that the proposed
controller allows exact sine-wave tracking even
though the plant parameters have some uncertainty
and even when one changes the linear load abruptly.
When we design a digital controller by means of the
emulation method with a fixed sampling time, we are
faced with the problem that the speed of the time
response must be limited.

As a possible method to the problem, the
characteristic ratio assignment was introduced. When
we deal with the step response requirements such as

overshoot and settling time, the CRA is applied much
easier compared with the pole-placement method.
Through several real-time simulations using
Simulink®™, it has been verified that the proposed
controller satisfies the tracking performance very well
over all linear load conditions. For a nonlinear load
condition such as a rectifier, the tracking performance
seems to be acceptable, but its THD (12.04%) does
not meet the given specification.
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