• 제목/요약/키워드: Two-phase inverter

검색결과 326건 처리시간 0.024초

비정현 계통 전압하에서 단상 인버터의 PLL 성능 개선 방법 (A Method to Improve the Performance of Phase-Locked Loop (PLL) for a Single-Phase Inverter Under the Non-Sinusoidal Grid Voltage Conditions)

  • Khan, Reyyan Ahmad;Ashraf, Muhammad Noman;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 추계학술대회
    • /
    • pp.7-8
    • /
    • 2017
  • The Phase-Locked Loop (PLL) is widely used in grid-tie inverter applications to achieve the synchronization between the inverter and the grid. However, its performance is deteriorated when the grid voltage is not pure sinusoidal due to the harmonics and the frequency deviation. Therefore it is important to design a high performance phase-locked loop (PLL) for the single phase inverter applications to guarantee the quality of the inverter output. In this paper a simple method to improve the performance of the PLL for the single phase inverter is proposed. The proposed PLL is able to accurately estimate the fundamental frequency component of the grid voltage even in the presence of harmonic components. In additional its transient response is fast enough to track a change in grid voltage within two cycles of the fundamental frequency. The effectiveness of the proposed PLL is confirmed through the PSIM simulation and experiments.

  • PDF

DC 오프셋 전류 주입에 의한 4-Switch 3-Phase Inverter의 커패시터 전압 불평형 보상 (Compensation of Unbalanced Capacitor Voltage for Four-switch Three-phase Inverter Using DC Offset Current Injection)

  • 박영주;손상훈;최익
    • 한국전자통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.365-373
    • /
    • 2015
  • 기존 6스위치 3상 인버터(SSTPI)의 한 상을 스위치 대신 커패시터로 대체한 4스위치 3상 인버터(FSTPI)에서 양 커패시터 전압의 불평형에 의한 출력전압의 오차를 보상하는 것은 FSTPI의 성능을 결정하는 중요한 요소이다. 본 논문에서는 DC 오프셋 전류 주입에 의하여 FSTPI의 커패시터 전압 불평형을 보상하는 새로운 방법과 FSTPI에 적용할 수 있는 간략화된 SVPWM 방법을 제안한다. 제안된 방법은 컴퓨터 시뮬레이션을 통해 타당성을 검증하였다.

Three-Phase Four-Wire Inverter Topology with Neutral Point Voltage Stable Module for Unbalanced Load Inhibition

  • Cai, Chunwei;An, Pufeng;Guo, Yuxing;Meng, Fangang
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1315-1324
    • /
    • 2018
  • A novel three-phase four-wire inverter topology is presented in this paper. This topology is equipped with a special capacitor balance grid without magnetic saturation. In response to unbalanced load and unequal split DC-link capacitors problems, a qusi-full-bridge DC/DC topology is applied in the balance grid. By using a high-frequency transformer, the energy transfer within the two split dc-link capacitors is realized. The novel topology makes the voltage across two split dc-link capacitors balanced so that the neutral point voltage ripple is inhibited. Under the condition of a stable neutral point voltage, the three-phase four-wire inverter can be equivalent to three independent single phase inverters. As a result, the three-phase inverter can produce symmetrical voltage waves with an unbalanced load. To avoid forward transformer magnetic saturation, the voltages of the primary and secondary windings are controlled to reverse once during each switching period. Furthermore, an improved mode chosen operating principle for this novel topology is designed and analyzed in detail. The simulated results verified the feasibility of this topology and an experimental inverter has been built to test the power quality produced by this topology. Finally, simulation results verify that the novel topology can effectively improve the inhibition of an inverter with a three-phase unbalanced load while decreasing the value of the split capacitor.

A Novel Cost-Effective Two-Level Inverter with Combined Use of Thyristors and IGBTs

  • Chen, Dezhi;Zhao, Wenliang;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.152-159
    • /
    • 2018
  • In this paper, a novel topology of two-level voltage-type inverter is proposed. The proposed inverter has three bridge arms while each bridge is made up of two thyristors, one IGBT and four diodes. Thyristors complete the phase positioning of the inverter, IGBT completes the modulation of different modulation modes such as SPWM, SVPWM, and SHPWM, and the diodes complete the commutation of the bridge arms. Compared to the traditional voltage-type inverter with six IGBTs, the proposed voltage-type inverter using three IGBTs can achieve the same function with highly reduced cost. The principle of the proposed two-level inverter is explained in detail. The simulation and experiment results demonstrate the performance and effectiveness of the proposed inverter-type inverter.

DC-Link Voltage Balance Control in Three-phase Four-wire Active Power Filters

  • Wang, Yu;Guan, Yuanpeng;Xie, Yunxiang;Liu, Xiang
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1928-1938
    • /
    • 2016
  • The three-phase four-wire shunt active power filter (APF) is an effective method to solve the harmonic problem in three-phase four-wire power systems. In addition, it has two possible topologies, a four-leg inverter and a three-leg inverter with a split-capacitor. There are some studies investigating DC-link voltage control in three-phase four-wire APFs. However, when compared to the four-leg inverter topology, maintaining the balance between the DC-link upper and lower capacitor voltages becomes a unique problem in the three-leg inverter with a split-capacitor topology, and previous studies seldom pay attention to this fact. In this paper, the influence of the balance between the two DC-link voltages on the compensation performance, and the influence of the voltage balance controller on the compensation performance, are analyzed. To achieve the balance between the two DC-link capacitor voltages, and to avoid the adverse effect the voltage balance controller has on the APF compensation performance, a new DC-link voltage balance control strategy for the three-phase four-wire split-capacitor APF is proposed. Representative simulation and experimental results are presented to verify the analysis and the proposed DC-link voltage balance control strategy.

기준전류추정형 인버어터에 의한 2 권선전동기의 2 상운전특성 (Characteristics of Two Phase Operation of Two Winding Motor Driven by Reference Current Adaptive Inverter)

  • 원종수;정의상
    • 대한전기학회논문지
    • /
    • 제33권8호
    • /
    • pp.289-298
    • /
    • 1984
  • The single phase induction motor is recently requested to meet a broad speed control and smooth forward and reverse operation due to the multifarious usages. This paper deals with two phase operation of a two winding motor by reference current adaptive inverter which can supply the currents to satisfy the balanced oeration into the main and auxiliary winding through the entire operational region. According to the roposed system, the starting, forward and reverse and variable speed control of a two winding motor eliminated the capacitor from the capacitor-run motor is also possible. The formation and its principle of the reference current adaptive inverter and characteristic analysis of the motor fed by this apparatus are described in this paper. Excellent agreement with the measured results and calculated values by computer simulation is obtained.

  • PDF

전압형 인버터가 연결된 새로운 방식의 SRM 컨버터 (New SRM converter connected to the voltage source inverter)

  • 장도현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.260-264
    • /
    • 2004
  • In this paper the novel converter topology for the switched reluctance motor drives is proposed, which is composed of the minimum switch per phase and is connected to the single-phase voltage inverter for ac voltage source. The proposed converter topology is divided into two types according to the voltage source inverter of half bridge type and full bridge type. Proposed converters of two types are proposed, analyzed and compared with each other. The SRM using proposed converter maintain the hi인 efficiency though the power switches are reduced.

  • PDF

3상 2레벨 계통연계형 태양광 인버터의 강인제어 (Robust Control of a Grid Connected Three-Phase Two-Level Photovoltaic Inverter)

  • 안경필;이영일
    • 전력전자학회논문지
    • /
    • 제19권6호
    • /
    • pp.538-548
    • /
    • 2014
  • This study provides a robust control of a grid-connected three-phase two-level photo voltaic inverter. The introduced control method uses the cascade control strategy to regulate AC-side current and DC-link voltage. A robust controller with integration action is used for the inner-loop AC-side current control, which maximizes the convergence rate using a linear matrix inequality-based optimization design method and eliminates the offset error. The robust controller design method considers the parameter uncertainty set to accommodate parameter mismatch and un-modeled components in the inverter model. An outer-loop proportional-integral controller is used to regulate DC-link voltage with linearization of DC/AC relation. The proposed control strategy is applied to a grid-connected 100 kW photo voltaic inverter.

The Power Analysis and Its Control of Two-phase Orthogonal Power Supply for the Continuous Casting

  • Ma, Fujun;Luo, An;Xiong, Qiaopo
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.971-982
    • /
    • 2015
  • In order to improve the quality of the billet continuous casting, a two-phase orthogonal power supply (TPOPS) for electromagnetic stirrer is researched, which is composed of three-phase PWM rectifier and three-leg inverter. According to the power analysis of system, the ripple of dc-link voltage is analyzed and its analytical expression is derived. In order to improve the performance of electromagnetic stirring, an integrated control method with feedforward control is proposed for PWM rectifier to suppress the fluctuations of dc-link voltage and provide a stable dc source for inverter. According to the simplified equivalent model, a composite current control method is proposed for inverter. This proposed method can combine the merits of feedforward control with feedback control to effectively improve the dynamic output performance of TPOPS. Finally, a 300kVA prototype of TPOPS is developed, and the results have verified the analysis and control method.

Characteristics of the Two-phase Induction Motor By the Inverter Fed Control

  • Yang Byoung-Yull;Kwon Byung-Il
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.312-316
    • /
    • 2005
  • The single phase induction motor has been commonly applied to small-sized electrical appliances because of its low cost, but it has low efficiency and large torque ripple, and it is incapable of speed control. However, two-phase induction motors have small torque ripple, high efficiency and variable speed control, because they are inverter fed. In this paper, the dynamic characteristics of the two-phase induction motor, such as the torque ripple, current and speed, are analyzed by using the time-stepping finite element method, and compared with the cage-type single phase induction motor.