• Title/Summary/Keyword: Two-phase interleaved buck converter

Search Result 10, Processing Time 0.02 seconds

High Efficiency Two-Phase Interleaved Buck Converter with Coupled Inductor Design (커플드 인덕터를 적용한 고효율 2상 인터리브드 벅 컨버터 설계)

  • Kang, Hyunji;Kim, Jinwoo;Lee, Sungmin;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.350-357
    • /
    • 2020
  • This study presents the design of an 18 kW two-phase interleaved buck converter that uses a coupled inductor for an electric vehicle rapid charger. The designs of a two-phase coupled inductor for current ripple and physical size reduction and a two-phase interleaved buck converter based on silicon carbide metal - oxide - semiconductor field-effect transistor for high efficiency were described in detail. The operating principle of the two-phase interleaved buck converter was analyzed, and the coupled inductor was investigated using a magnetized equivalent circuit. Simulation and experiments were conducted to verify the validity of the proposed two-phase interleaved buck converter, and the theoretical design method and experimental results were confirmed.

2-Phase Bidirectional Non-Inverting Buck-Boost Converter using Coupled Inductor (결합 인덕터를 이용한 2상 양방향 비반전 벅-부스트 컨버터)

  • Chae, Jun-Young;Jeong, Seung-Yong;Cha, Hon-Nyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.481-487
    • /
    • 2014
  • This study proposes a two-phase non-inverting buck-boost converter that uses a coupled inductor. The multi-phase converter has many advantages over single-phase counterparts, such as reduced output current ripple and conduction loss in switching devices and passive elements. Although the output current ripple of the multi-phase converter is reduced significantly because of the interleaved effect, the inductor current ripple is not reduced in multi-phase converters. One of the solutions to this problem is to use a coupled inductor. A 4 kW prototype converter is built and tested to verify the performance of the proposed converter.

Inductor Characteristics Analysis in High Power Interleaved Buck Converter

  • Yun, Chul;Yoon, Byungkeun;Kwon, Woohyen;Kim, Woohyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2017
  • Inductor in high power converter system increases production cost, volume and core loss proportional to the power. To decrease these disadvantages, this paper analyzed the characteristic of parallel-inductor and coupled-inductor in interleaved system with simulation. As a result, it is confirmed that two-phase interleaved non-coupled buck-converter has the best characteristic among three types converter.

Reduction of Conducted Emission in Interleaved RPWM Buck Converter (인터리브드 RPWM Buck 컨버터의 전도성 노이즈 감소에 대한 연구)

  • Lee, Seunghyun;Lee, Keunbong;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.298-308
    • /
    • 2017
  • This paper presents a Interleaved Buck Converter(IBC) system with Random PWM to reduce electromagnetic noise by harmonics. Swithced mode power supply generally controlled by high switching frequency have a electromagnetic interference(EMI) issue due to the high-voltage/high-current switching to regulate the voltage in buck converter. To solve the problem. we present a novel IBC system with PRBS. IBC system has two active switches with 180 phase difference that controll the cicuit with two PWM signal. IBC system may be disadventageous for the cost due to the addtion of one set of switch, but it has adventages of power distribution, current ripple cancellation, fast transient response, and passive component size reduction. To verify the validity of study, simulation program has been bulit using PSIM and the experimental results of IBC system using RPWM was compared with the conventinal PWM and randomized PWM.

A Study on the Reduction of Current Unbalancing of Two-phase Interleaved Buck Converter using Variable Inductor (가변 인덕터를 적용한 2상 인터리브드 벅 컨버터의 전류 불평형 저감에 관한 연구)

  • Lim, Jaeseong;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.417-424
    • /
    • 2022
  • This study proposes a current-balancing technique for an interleaved buck converter using a variable inductor and a snubber capacitor. The proposed scheme balances the inductor current by using the variable inductor and enables zero voltage switching under all load ranges. With the variable inductor, the ripple of inductor current changes according to load variation. In addition, a 1.6 kW prototype is built to verify the validity of the proposed scheme, and the experimental results are successfully obtained.

Parallel Operation of Three-Phase Bi-Directional Isolated Interleaved DC-DC Converters for The Battery Charge/Discharge System (배터리 충·방전기 시스템에 적용되는 3상 양방향 절연형 인터리브드 DC-DC 컨버터의 병렬운전)

  • Jo, Hyunsik;Lee, Jaedo;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Recently, parallel operation of dc-dc converters has been widely used in distributed power systems. In this paper, a control method to achieve parallel operation of three-phase bi-directional isolated interleaved dc-dc converters is discussed for the battery charging and discharging system which consists of the 32 battery charger/dischargers and two three-phase bi-directional isolated interleaved dc-dc converters. In the boost mode, the battery energy is delivered to the grid, whereas the grid energy is transferred to the battery in the buck mode operation. The average current sharing control method is employed to obtain an equal conducting of each phase current in the three-phase dc-dc converter. By using the proposed method, the imbalance factor is gratefully reduced from 8 percent to 1 percent. Two 2.5kW three-phase bi-directional dc-dc converter prototype have been built and the proposed method has been verified through experiments.

A Two-Phase Interleaved Bidirectional DC-DC Converter with Zero-Voltage-Transition (영 전압 천이를 갖는 2상 인터리브드 양방향 DC-DC 컨버터)

  • Lim, Chang-Soon;Ku, Nam-Joon;Kim, Min-Sub;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.431-439
    • /
    • 2014
  • The two-phase interleaved bidirectional DC-DC converter (TIBDC) is a very attractive solution to problems related to battery energy storage systems. However, the hard-switching TIBDC increases the switching loss and electromagnetic interference noise when the switching frequency increases. Hence, a soft-switching technique is required to overcome these disadvantages. In this study, a novel TIBDC with zero-voltage transition (TIBDC-ZVT) is proposed. Soft switching in the boost and buck main switches is achieved through a resonant cell that consists of a single resonant inductor and four auxiliary switches. Given its single resonant inductor, the proposed TIBDC-ZVT has a reduced size and can easily be implemented. The validity of the proposed TIBDC-ZVT is verified through experimental results.

Selection of Coupling Factor for Minimum Inductor Current Ripple in Multi-winding Coupled Inductor Used in Bidirectional DC-DC Converters

  • Kang, Taewon;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.879-891
    • /
    • 2018
  • A bidirectional dc-dc converter is used in battery energy storage systems owing to the growing requirements of a charging and discharging mode of battery. The magnetic coupling of output or input inductors in parallel-connected multi modules of a bidirectional dc-dc converter is often utilized to reduce the peak-to-peak ripple size of the inductor current. This study proposes a novel design guideline to achieve minimal ripple size of the inductor current under bidirectional power flow. The newly proposed design guideline of optimized coupling factor is applicable to the buck and boost operation modes of a bidirectional dc-dc converter. Therefore, the coupling factor value of the coupled inductor does not have to be optimized separately for buck and boost operation modes. This new observation is explained using the theoretical model of coupled inductor and confirmed through simulation and experimental test.

Research on a 2.5kW 8-Phase Bi-directional Converter for Mild Hybrid Electric Vehicles (마일드 하이브리드 전기 차량용 2.5kW급 8상 양방향 컨버터에 관한 연구)

  • Lim, Jae-Woo;Kim, Hee-Jun;Choi, Jun-Sam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.82-91
    • /
    • 2017
  • This paper is a study on the bi-directional DC-DC converter, one of the key elements of 48V-12V dual systems in mild hybrid electric vehicles. Mild hybrid electric vehicles require a bi-directional DC-DC converter that can efficiently transmit power in two directions between a 48V battery and a 12V battery. To develop a bi-directional DC-DC converter with better price competitiveness, upgraded fuel economy, excellent performance and smaller size, this study designed, produced and presented a circuit that improved on the existing one. In the proposed 8-phase bi-directional DC-DC converter, the size of the passive element was reduced through the 8-phase interleaved topology, whereas downscaling had previously posed a difficulty. This study also designed and produced a 2.5kW class prototype. Based on the proposed 8-phase interleaved topology, a size of 227.5 (W) * 172 (L) * 64.35 (H) was achieved. In the boost mode operation and buck operation modes, the maximum efficiency was recorded at 94.04 % and 95.78 %, respectively.

High efficiency two-phase interleaved buck converter with coupled inductor design for EV rapid charger applications (전기자동차 급속 충전기를 위한 커플드 인덕터를 적용한 고효율 2상 인터리브드 벅 컨버터 설계)

  • Kang, Hyunji;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.25-27
    • /
    • 2019
  • 본 논문은 전기 자동차 급속 충전기 구현을 위한 커플드 인덕터 기반 18kW급 2상 인터리브드 벅 컨버터 설계에 관하여 설명한다. 전류 리플 및 물리적인 크기 감소를 위한 2상 커플드 인덕터와 고효율 달성을 위한 Silicon Carbide(SiC) MOSEFT 기반 2상 인터리브드 벅 컨버터의 설계에 관하여 상세히 기술한다. 제안하는 2상 인터리브드 벅 컨버터의 동작을 위하여 모의 실험과 실험을 진행하였고 이론적인 설계 방법과 실제 실험 결과가 일치하는 것을 확인하였다.

  • PDF