• 제목/요약/키워드: Two-phase critical flow

검색결과 90건 처리시간 0.023초

Counter-Current Air-Water Flow in Narrow Rectangular Channels With Offset Strip Fins

  • Kim, Byong-Joo;Sohn, Byung-Hu;Koo, Kee-Kahb
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.429-439
    • /
    • 2003
  • Counter-current two-phase flows of air- water in narrow rectangular channels with offset strip fins have been experimentally investigated in a 760 mm long and 100 mm wide test section with 3.0 and 5.0 mm gap widths. The two-phase flow regime, channel-average void fractions and two-phase pressure gradients were studied. Flow regime transition occurred at lower superficial velocities of air than in the channels without fins. In the bubbly and slug flow regimes, elongated bubbles rose along the subchannel formed by fins without lateral movement. The critical void fraction for the bubbly-to-slug transition was about 0.14 for the 3 mm gap channel and 0.2 for the 5 mm gap channel. respectively. Channel-average void fractions in the channels with fins were almost the same as those in the channels without fins. Void fractions increased as the gap width increased, especially at high superficial velocity of air. The presence of fins enhanced the two-phase distribution parameter significantly in the slug flow, where the effect of gap width was almost negligible. Superficial velocity of air dominated the two-phase pressure gradients. Liquid superficial velocity and channel gap width has only a minor effect on the pressure gradients.

Experimental Observations of Boiling and Flow Evolution in a Coiled Tube

  • Ye, P.;Peng, X.F.;Wu, H.L.;Meng, M.;Gong, Y. Eric
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권1호
    • /
    • pp.22-29
    • /
    • 2008
  • A sequence of visually experimental observations was conducted to investigate the flow boiling and two-phase flow in a coiled tube. Different boiling modes and bubble dynamical evolutions were identified for better recognizing the phenomena and understanding the two-phase flow evolution and heat transfer mechanisms. The dissolved gases and remained vapor would serve as foreign nucleation sites, and together with the effect of buoyancy, centrifugal force and liquid flow, these also induce very different flow boiling nucleation, boiling modes, bubble dynamical behavior, and further the boiling heat transfer performance. Bubbly flow, plug flow, slug flow, stratified/wavy flow and annular flow were observed during the boiling process in the coiled tube. Particularly the effects of flow reconstructing and thermal non-equilibrium release in the bends were noted and discussed with the physical understanding. Coupled with the effects of the buoyancy, centrifugal force and inertia or momentum ratio of the two fluids, the flow reconstructing and thermal non-equilibrium release effects have critical importance for flow pattern in the bends and flow evolution in next straight sections.

Two-Phase Flow Regimes for Counter-Current Air-Water Flows in Narrow Rectangular Channels

  • Kim, Byong-Joo;Sohn, Byung-Hu;Siyoung Jeong
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.941-950
    • /
    • 2001
  • A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760mm long and 100mm wide test section with 2.0 and 5.0mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition become pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant.

  • PDF

Reynolds and froude number effect on the flow past an interface-piercing circular cylinder

  • Koo, Bonguk;Yang, Jianming;Yeon, Seong Mo;Stern, Frederick
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.529-561
    • /
    • 2014
  • The two-phase turbulent flow past an interface-piercing circular cylinder is studied using a high-fidelity orthogonal curvilinear grid solver with a Lagrangian dynamic subgrid-scale model for large-eddy simulation and a coupled level set and volume of fluid method for air-water interface tracking. The simulations cover the sub-critical and critical and post critical regimes of the Reynolds and sub and super-critical Froude numbers in order to investigate the effect of both dimensionless parameters on the flow. Significant changes in flow features near the air-water interface were observed as the Reynolds number was increased from the sub-critical to the critical regime. The interface makes the separation point near the interface much delayed for all Reynolds numbers. The separation region at intermediate depths is remarkably reduced for the critical Reynolds number regime. The deep flow resembles the single-phase turbulent flow past a circular cylinder, but includes the effect of the free-surface and the limited span length for sub-critical Reynolds numbers. At different Froude numbers, the air-water interface exhibits significantly changed structures, including breaking bow waves with splashes and bubbles at high Froude numbers. Instantaneous and mean flow features such as interface structures, vortex shedding, Reynolds stresses, and vorticity transport are also analyzed. The results are compared with reference experimental data available in the literature. The deep flow is also compared with the single-phase turbulent flow past a circular cylinder in the similar ranges of Reynolds numbers. Discussion is provided concerning the limitations of the current simulations and available experimental data along with future research.

Investigation of hyperbolic dynamic response in concrete pipes with two-phase flow

  • Zheng, Chuanzhang;Yan, Gongxing;Khadimallah, Mohamed Amiine;Nouri, Alireza Zamani;Behshad, Amir
    • Advances in concrete construction
    • /
    • 제13권5호
    • /
    • pp.361-365
    • /
    • 2022
  • The objective of this study is to simulate the two-phase flow in pipes with various two-fluid models and determinate the shear stress. A hyperbolic shear deformation theory is used for modelling of the pipe. Two-fluid models are solved by using the conservative shock capturing method. Energy relations are used for deriving the motion equations. When the initial conditions of problem satisfied the Kelvin Helmholtz instability conditions, the free-pressure two-fluid model could accurately predict discontinuities in the solution field. A numerical solution is applied for computing the shear stress. The two-pressure two-fluid model produces more numerical diffusion compared to the free-pressure two-fluid and single-pressure two-fluid models. Results show that with increasing the two-phase percent, the shear stress is reduced.

Phase Diagram에 의한 밀폐캐비티의 비정상 유동특성 (Unsteady Flow Characteristics of Closed Cavity by Phase Diagram)

  • 조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권6호
    • /
    • pp.770-777
    • /
    • 1999
  • In this study a phase diagram has been used to investigate the unsteadiness of two-dimensional lid-driven closed flows within a square cavity for twelve Reynolds numbers; $7.5{\times}10^3,\; 8{\times}10^3,\; 8.5{\times}10^3,\; 9{\times}10^3,\; 9.5{\times}10^3,\; 10^4,\;1.5{\times}10^4,\;2{\times}10^4,\; 3{\times}10^4,\; 7.5{\times}10^4$ and $10^5$. The results indicate that the first critical Reynolds number at which the flow unsteadiness of sinusoidal fluctuation appears from the temporal variation of total kinetic energy curves is assumed of sinusoidal fluctuation appears form the temporal variation of total kinetic energy curves is assumed to be in the neigh-bourhood of $Re=8.5{\times}10^3$ The second critical Reynolds number where the periodic amplitude and frequency collapse to random disturbance being existed around $Re=1.5{\times}10^4$ The exponentially decreasing vortices formed at the lower two corners are found commonly at the time-mean flow pattern of $Re=3{\times}10^4$.

  • PDF

Critical Heat Flux under Forced and Natural Circulations of Water at Low-Pressure, Low-Flow Conditions

  • Kim, Yun-Il;Baek, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.315-320
    • /
    • 1995
  • The CHF phenomenon has been investigated for water flow under forced and natural circulation modes with vertical round tubes at low pressure and low flow condition. Experiments have been performed by using three different test sections for mass fluxes below 400 kg/㎡s under near atmospheric pressure. The experimental data for forced and natural circulation are compared with each other. To predict the flow rate at the two-phase region our test condition has been analyzed by RELAP5/MOD3 because the local two-phase condition inside the stainless steel tube cannot be directly measured. To predict the CHF with accuracy we have to consider the parameters at the single-phase region as well as the flow behavior at the two-phase region.

  • PDF

Flow-induced instability and nonlinear dynamics of a tube array considering the effect of a clearance gap

  • Lai, Jiang;Sun, Lei;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1650-1657
    • /
    • 2019
  • Fluidelastic instability and nonlinear dynamics of tube bundles is a key issue in a steam generator. Especially, once the post-instability motion of the tube becomes larger than the clearance gap to other tubes, effective contact or impact between the tubes under consideration and the other tube inevitable. There is seldom theoretical analysis to the nonlinear dynamic characteristics of a tube array in two-phase flow. In this paper, experimental and numerical studies were utilized to obtain the critical velocity of the flow-induced instability of a rotated triangular tube array. The calculation results agreed well with the experimental data. To explore the post-instability dynamics of the tube array system, a Runge-Kutta scheme was used to solve the nonlinear governing equations of tube motion. The numerical results indicated that, when the flow pitch velocity is larger than the critical velocity, the tube array system is undergoing a limit cycle motion, and the dynamic characteristics of the tube array are almost similar for different void fractions.

2 상 횡 유동장에 놓인 관군의 유체탄성불안정성 (Fluid-elastic Instability in a Tube Array Subjected to Two-Phase Cross Flow)

  • 심우건;박미연
    • 대한기계학회논문집B
    • /
    • 제33권2호
    • /
    • pp.124-132
    • /
    • 2009
  • Experiments have been performed to investigate fluid-elastic instability of tube bundles, subjected to twophase cross flow. Fluid-elastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to the cross flow. The test section consists of cantilevered flexible cylinder(s) and rigid cylinders of normal square array. From a practical design point of view, fluid-elastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping parameter. For dynamic instability of cylinder rows, added mass, damping and the threshold flow velocity are evaluated. The Fluid-elastic instability coefficient is calculated and then compared to existing results given for tube bundles in normal square array.

사다리꼴 미세유로의 대류비등 2상유동 : 1부-압력강하 특성 (Convective Boiling Two-phase Flow in Trapezoidal Microchannels : Part 1-Pressure Drop Characteristics)

  • 김병주;김건일
    • 설비공학논문집
    • /
    • 제23권1호
    • /
    • pp.87-94
    • /
    • 2011
  • Characteristics of two-phase pressure drop in microchannels were investigated experimentally. The microchannels consisted of 9 parallel trapezoidal channels with each channel having $205\;{\mu}m$ of bottom width, $800\;{\mu}m$ of depth, $3.6^{\circ}$ of sidewall angle, and 7 cm of length. Pressure drops in convective boiling of Refrigerant 113 were measured in the range of inlet pressure 105~195 kPa, mass velocity $150{\sim}920\;kg/m^2s$, and heat flux $10{\sim}100\;kW/m^2$. The total pressure drop generally increased with increasing mass velocity and/or heat flux. Two-phase frictional pressure drop across the microchannels increased rapidly with exit quality and showed bigger gradient at higher mass velocity. A critical review of correlations in the literature suggested that existing correlations were not able to match the experimental results obtained for two-phase pressure drop associated with convective boiling in microchannels. A new correlation suitable for predicting two-phase friction multiplier was developed based on the separated flow model and showed good agreement with the experimental data.