• Title/Summary/Keyword: Two-parameter Kappa distribution

Search Result 5, Processing Time 0.016 seconds

Bayesian Estimation of the Two-Parameter Kappa Distribution

  • Oh, Mi-Ra;Kim, Sun-Worl;Park, Jeong-Soo;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.355-363
    • /
    • 2007
  • In this paper a Bayesian estimation of the two-parameter kappa distribution was discussed under the noninformative prior. The Bayesian estimators are obtained by the Gibbs sampling. The generation of the shape parameter and scale parameter in the Gibbs sampler is implemented using the adaptive rejection Metropolis sampling algorithm of Gilks et al. (1995). A Monte Carlo study showed that the Bayesian estimators proposed outperform other estimators in the sense of mean squared error.

LH-Moments of Some Distributions Useful in Hydrology

  • Murshed, Md. Sharwar;Park, Byung-Jun;Jeong, Bo-Yoon;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.647-658
    • /
    • 2009
  • It is already known from the previous study that flood seems to have heavier tail. Therefore, to make prediction of future extreme label, some agreement of tail behavior of extreme data is highly required. The LH-moments estimation method, the generalized form of L-moments is an useful method of characterizing the upper part of the distribution. LH-moments are based on linear combination of higher order statistics. In this study, we have formulated LH-moments of five distributions useful in hydrology such as, two types of three parameter kappa distributions, beta-${\kappa}$ distribution, beta-p distribution and a generalized Gumbel distribution. Using LH-moments reduces the undue influences that small sample may have on the estimation of large return period events.

The study for NHPP Software Reliability Model based on Kappa(2) distribution (Kappa(2) NHPP에 의한 소프트웨어 신뢰성 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.689-696
    • /
    • 2005
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the Kappa(2) reliability model, which can capture the nomotonic decreasing nature of the failure occurrence rate per fault. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on sum of the squared errors and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using real data set, SYS2(Allen P.Nikora and Michael R.Lyu), for the sake of proposing two parameter of the Kappa distribution, was employed. This analysis of failure data compared with the Kappa model and the existing model using arithmetic and Laplace trend tests, bias tests is presented.

  • PDF

Error Rate for the Limiting Poisson-power Function Distribution

  • Joo-Hwan Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.243-255
    • /
    • 1996
  • The number of neutron signals from a neutral particle beam(NPB) at the detector, without any errors, obeys Poisson distribution, Under two assumptions that NPB scattering distribution and aiming errors have a circular Gaussian distribution respectively, an exact probability distribution of signals becomes a Poisson-power function distribution. In this paper, we show that the error rate in simple hypothesis testing for the limiting Poisson-power function distribution is not zero. That is, the limit of ${\alpha}+{\beta}$ is zero when Poisson parameter$\kappa\rightarro\infty$, but this limit is not zero (i.e., $\rho\ell$>0)for the Poisson-power function distribution. We also give optimal decision algorithms for a specified error rate.

  • PDF

Use of beta-P distribution for modeling hydrologic events

  • Murshed, Md. Sharwar;Seo, Yun Am;Park, Jeong-Soo;Lee, Youngsaeng
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.15-27
    • /
    • 2018
  • Parametric method of flood frequency analysis involves fitting of a probability distribution to observed flood data. When record length at a given site is relatively shorter and hard to apply the asymptotic theory, an alternative distribution to the generalized extreme value (GEV) distribution is often used. In this study, we consider the beta-P distribution (BPD) as an alternative to the GEV and other well-known distributions for modeling extreme events of small or moderate samples as well as highly skewed or heavy tailed data. The L-moments ratio diagram shows that special cases of the BPD include the generalized logistic, three-parameter log-normal, and GEV distributions. To estimate the parameters in the distribution, the method of moments, L-moments, and maximum likelihood estimation methods are considered. A Monte-Carlo study is then conducted to compare these three estimation methods. Our result suggests that the L-moments estimator works better than the other estimators for this model of small or moderate samples. Two applications to the annual maximum stream flow of Colorado and the rainfall data from cloud seeding experiments in Southern Florida are reported to show the usefulness of the BPD for modeling hydrologic events. In these examples, BPD turns out to work better than $beta-{\kappa}$, Gumbel, and GEV distributions.