• Title/Summary/Keyword: Two-axis solar tracker

Search Result 7, Processing Time 0.021 seconds

A Study on a Two-Axis Solar Tracking System Based on Fuzzy Logic Control (퍼지 논리 제어를 기반으로 한 2축 태양광 추적시스템에 관한 연구)

  • Ahn, Byeongwon;Lee, Hui-Bae;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.531-537
    • /
    • 2015
  • In order to maximize power output from the solar panels, one needs to keep the panels aligned with the sun. So solar tracker having high reliability must be designed. This paper cares about the design and evaluation of a two-axis solar tracker system based on fuzzy logic control with LabVIEW. The research focus on planning mechanical parts, making an intelligent controller which controls and monitors all parameters via user interface implemented of a fuzzy decision support system for control of photovoltaic panel movement. We also develop a real solar tracker system and analyze the influence indexes such as environment, weather, season, and light condition. The solar tracker is tested in real condition and all parameters related to the system operation are recorded and analyzed. The developed solar tracking system got a much higher efficiency about 38 % compare to fixed solar panel although the weather condition is affected a lot to the solar panel. So we confirmed the our auto tracking system is more effective and can allow more energy to be produced.

Tracking Method of Inclination-dependent 2-axis Solar Tracker (경사각 종속형 2축식 태양광 추적기의 추적방식)

  • Hong, Jung-Hoon;Kim, Eun-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.180-187
    • /
    • 2013
  • The dinger in solar generation is the amount of sunlight which the solar cells absorb. Various types of solar trackers, which rotate themselves in order to make the solar cells face the sun as much as possible, have been developed, and especially the method of tracking with two axes has greatly contributed in increasing the generation amount at work sites. Among theses 2-axis solar trackers, the inclination-dependent 2-axis solar tracker are widely utilized for its advantages of requiring less initial investment and easy maintenance due to a solid structure. However, the drawback is that the generation efficiency is relatively low because of the structural restriction that limits the rotation angle, thus making it less efficient when tracking the sun. This paper proposes a method to increase the generation efficiency of the inclination-dependent 2-axis solar tracker. It also contains the derived equations needed for precise controlling along with a method to keep tracking with the other axis even when one has reached its angle limit. To confirm that the proposed method increases the amount of incidence onto the solar cells, formulas needed for operation on the proposed method and tracking the exact position of the sun are derived, and applying this to the quarterly data of Korea Astronomy and Space Science Institute it shows maximum over 11.1% more incidence compared to existing methods.

Design of Sun Tracker System for Solar Power Generation (태양광 발전을 위한 태양추적시스템 설계)

  • An, Jun-Sik;Heo, Nam-Euk;Kim, Il-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.330-332
    • /
    • 2006
  • In this paper, sun tracking system using Sun position sensor is proposed, the sun tracking system designed as which raises the efficiency of solar power generation. It design the structure being simple and it develops the system which is economical efficiency. It develops the hazard technique such as location tracking method of the sun which uses the sensor and to use the motor solar cell module movement. The Sun tracking system makes the drive in order to do with one axis and to use the sensor and to know in order to put out, the location of the sun and it makes. To make the solar location tracking sensor where the structure is simple it used two solar cells.

  • PDF

Development of an AVR MCU-based Solar Tracker (AVR 마이크로 컨트롤러 기반의 태양추적 장치 개발)

  • Oh, Seung-Jin;Lee, Yoon-Joon;Kim, Nam-Jin;Hyun, Joon-Ho;Lim, Sang-Hoon;Chun, Won-Gee
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.353-357
    • /
    • 2011
  • An embedded two-axis solar tracking system was developed by using AVR micro controller for enhancing solar energy utilization. The system consists of an Atmega128 micro controller, two step motors, two step drive modules, CdS sensors, GPS module and other accessories needed for functional stability. This system is controlled by both an astronomical method and an optical method. Initial operation is performed by the result from the astronomical method, which is followed by the fine controlled operation using the signals from Cds sensors. The GPS sensor generates UTC, longitude and latitude data where the solar tracker is installed. A database of solar altitude, azimuth, and sunrise and sunset times is provided by UART (Universal Asynchronous Receiver/Transmitter).

Electric Lighting Energy Saving Through the Use of A Fresnel Lens Based Fiber-optic Solar Lighting System: Simulation and Measurements (광화이버 및 Fresnel lens 적용 집광식 자연채광 시스템의 이용을 통한 조명에너지의 절감: 시뮬레이션 및 실측 비교)

  • Jeong, Haejun;Kim, Wonsik;Kim, Yeongmin;Han, Hyun Joo;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.3
    • /
    • pp.1-12
    • /
    • 2017
  • This paper deals with the effectiveness of a fiber optic solar lighting system that uses a Fresnel lens mounted on a two-axis solar tracker. A series of comparative analyses were made concerning its performance as compared to fluorescent lighting by using a simulation model based on ECOTECT and RADIANCE as well as referring to actual data. ECOTECT was used to model the test room (space) while RADIANCE was used for its indoor lighting conditions (environment). It was found that the average indoor light levels of fluorescent lighting fully satisfy the KS standard (KS A 3011, general office, class [G]: 300-400-600 lux) whereas those of the solar lighting with light diffusers depends on the occlusion factor of roller shades installed on the south window.

Improved Orientation Strategy for Energy-Efficiency in Photovoltaic Panels

  • Dousoky, Gamal M.;El-Sayed, Abou-Hashema M.;Shoyama, Masahito
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.335-341
    • /
    • 2011
  • This paper presents an improved orientation strategy for energy-efficiency in photovoltaic (PV) panels. Conventionally, PV panels are tilted with the site's latitude angle or the difference between the latitude angle and the solar declination angle. A monthly-based orientation strategy has been proposed and analyzed in this study. The proposed strategy implies that the PV panels are tilted with the monthly-based angle that achieves the maximum incident radiation. Furthermore, the impact of using the proposed orientation strategy and three conventional strategies on the produced power and on the PV system design features has been investigated in detail. A Japanese city (Fukuoka) and an Egyptian city (Al-Kharijah) have been considered as locations for the PV power system installation. The results showed that the proposed strategy achieved an increase in the power produced from the PV power systems at the two different sites, and consequently the required solar cells area can be saved. Therefore, the cost of the PV power system components can be reduced including the solar cells area and the land area.

Electric lighting energy saving through the use of a Fresnel lens based fiber-optic solar lighting system : Simulation and measurements (광화이버 및 Fresnel lens 적용 집광식 자연채광 시스템의 이용을 통한 조명에너지의 절감 : 시뮬레이션 및 실측 비교)

  • Jeong, Haejun;Kim, Wonsik;Kim, Yeongmin;Han, Hyun Joo;Chun, Wongee
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.34-44
    • /
    • 2017
  • This paper deals with the effectiveness of a fiber optic solar lighting system that uses a Fresnel lens mounted on a two-axis solar tracker. A series of comparative analyses were made concerning its performance as compared to fluorescent lighting by using a simulation model based on ECOTECT and RADIANCE as well as referring to actual data. ECOTECT was used to model the test room (space) while RADIANCE was used for its indoor lighting conditions (environment). It was found that the average indoor light levels of fluorescent lighting fully satisfy the KS standard (KS A 3011, general office, class [G]: 300-400-600lux) whereas those of the solar lighting with light diffusers depends on the occlusion factor of roller shades installed on the south window.