• Title/Summary/Keyword: Two-Phase (Two-Component) Flow

Search Result 70, Processing Time 0.021 seconds

Effect of the Gravity Forces on Flow Pattern and Frictional Pressure Drop in Two-Phase, Two-Component Flow

  • Choi, B.-H;Han, W.-H
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.338-346
    • /
    • 2004
  • Experimental data on the effect of the variable gravity magnitude, namely microgravity, normal gravity and hyper-gravity, on flow pattern and frictional pressure drop were obtained during co-current air-water flow in a horizontal tube, The flow patterns were found to depend strongly on the gravity magnitude and certain flow pattern were found to depend on the gas superficial velocity. The effect of the gravity magnitude had an effect on the frictional pressure drop only at low flow rates. The present data are used to evaluate some of existing flow pattern transition and pressure drop models and correlations.

HYDRODYNAMIC SOLVER FOR A TRANSIENT, TWO-FLUID, THREE-FIELD MODEL ON UNSTRUCTURED GRIDS (비정렬격자계에서 과도 이상유동해석을 위한 수치해법)

  • Jeong, J.J.;Yoon, H.Y.;Kim, J.;Park, I.K.;Cho, H.K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed for a 3D component of a nuclear system code and a component-scale analysis tool. A two-fluid three-field model is used for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. An unstructured grid is adopted for realistic simulations of the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been applied to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the modified numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing very well.

Effects of Annular Gap Size on the Flow Pattern and Void Distribution in a Vertical Upward Two-Phase Flow (수직상향 이상류에서 동심원관 간극이 유동양식과 보이드분포에 미치는 영향)

  • Son B. J.;Kim I. S.;Kim M. C.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.4
    • /
    • pp.383-391
    • /
    • 1987
  • An experimental investigation has been conducted to determine the flow pattern for two-component , two-phase mixtures which flow vertically upwards in concentric annuli based on the measurement for the local void fraction and the distribution of the local void fraction in various radial locations in the annular gap. The annular test section consists of a lucite outer tube whose inside diameter is 38mm and a stainless steel rod, The rod diameter is either :2mm,16mm or 20mm. It is demonstrated that the probability density function of the fluctuations in void fraction may be used as an flow pattern indicator and the local void fraction distribution depends on the flow pattern and radial location in the annular passage.

  • PDF

Characteristics of Water Droplets in Gasoline Pipe Flow (가솔린 송유관에서의 수액적 거동 특성)

  • Kim, J.H.;Kim, S.G.;Bae, C.;Sheen, D.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

RECENT IMPROVEMENTS IN THE CUPID CODE FOR A MULTI-DIMENSIONAL TWO-PHASE FLOW ANALYSIS OF NUCLEAR REACTOR COMPONENTS

  • Yoon, Han Young;Lee, Jae Ryong;Kim, Hyungrae;Park, Ik Kyu;Song, Chul-Hwa;Cho, Hyoung Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.655-666
    • /
    • 2014
  • The CUPID code has been developed at KAERI for a transient, three-dimensional analysis of a two-phase flow in light water nuclear reactor components. It can provide both a component-scale and a CFD-scale simulation by using a porous media or an open media model for a two-phase flow. In this paper, recent advances in the CUPID code are presented in three sections. First, the domain decomposition parallel method implemented in the CUPID code is described with the parallel efficiency test for multiple processors. Then, the coupling of CUPID-MARS via heat structure is introduced, where CUPID has been coupled with a system-scale thermal-hydraulics code, MARS, through the heat structure. The coupled code has been applied to a multi-scale thermal-hydraulic analysis of a pool mixing test. Finally, CUPID-SG is developed for analyzing two-phase flows in PWR steam generators. Physical models and validation results of CUPID-SG are discussed.

DEVELOPMENT OF THE MULTI-DIMENSIONAL HYDRAULIC COMPONENT FOR THE BEST ESTIMATE SYSTEM ANALYSIS CODE MARS

  • Bae, Sung-Won;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1347-1360
    • /
    • 2009
  • A multi-dimensional component for the thermal-hydraulic system analysis code, MARS, was developed for a more realistic three-dimensional analysis of nuclear systems. A three-dimensional and two-fluid model for a two-phase flow in Cartesian and cylindrical coordinates was employed. The governing equations and physical constitutive relationships were extended from those of a one-dimensional version. The numerical solution method adopted a semi-implicit and finite-difference method based on a staggered-grid mesh and a donor-cell scheme. The relevant length scale was very coarse compared to commercial computational fluid dynamics tools. Thus a simple Prandtl's mixing length turbulence model was applied to interpret the turbulent induced momentum and energy diffusivity. Non drag interfacial forces were not considered as in the general nuclear system codes. Several conceptual cases with analytic solutions were chosen and analyzed to assess the fundamental terms. RPI air-water and UPTF 7 tests were simulated and compared to the experimental data. The simulation results for the RPI air-water two-phase flow experiment showed good agreement with the measured void fraction. The simulation results for the UPTF downcomer test 7 were compared to the experiment data and the results from other multi-dimensional system codes for the ECC delivery flow.

MULTI-SCALE THERMAL-HYDRAULIC ANALYSIS OF PWRS USING THE CUPID CODE

  • Yoon, Han Young;Cho, Hyoung Kyu;Lee, Jae Ryong;Park, Ik Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.831-846
    • /
    • 2012
  • KAERI has developed a two-phase CFD code, CUPID, for a refined calculation of transient two-phase flows related to nuclear reactor thermal hydraulics, and its numerical models have been verified in previous studies. In this paper, the CUPID code is validated against experiments on the downcomer boiling and moderator flow in a Calandria vessel. Physical models relevant to the validation are discussed. Thereafter, multi-scale thermal hydraulic analyses using the CUPID code are introduced. At first, a component-scale calculation for the passive condensate cooling tank (PCCT) of the PASCAL experiment is linked to the CFD-scale calculation for local boiling heat transfer outside the heat exchanger tube. Next, the Rossendorf coolant mixing (ROCOM) test is analyzed by using the CUPID code, which is implicitly coupled with a system-scale code, MARS.

Development of a special thermal-hydraulic component model for the core makeup tank

  • Kim, Min Gi;Wisudhaputra, Adnan;Lee, Jong-Hyuk;Kim, Kyungdoo;Park, Hyun-Sik;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1890-1901
    • /
    • 2022
  • We have assessed the applicability of the thermal-hydraulic system analysis code, SPACE, to a small modular reactor called SMART. For the assessment, the experimental data from a scale-down integral-test facility, SMART-ITL, were used. It was conformed that the SPACE code unrealistically calculates the safety injection flow rate through the CMT and SIT during a small-break loss-of-coolant experiment. This unrealistic behavior was due to the overprediction of interfacial heat transfer at the steam-water interface in a vertically stratified flow in the tanks. In this study, a special thermal-hydraulic component model has been developed to realistically calculate the interfacial heat transfer when a strong non-equilibrium two-phase flow is formed in the CMT or SIT. Additionally, we developed a special heat structure model, which analytically calculates the heat transfer from the hot steam to the cold tank wall. The combination of two models for the tank are called the special component model. We assessed it using the SMART-ITL passive safety injection system (PSIS) test data. The results showed that the special component model well predicts the transient behaviors of the CMT and SIT.

2상유동의 연구개요

  • 이상용
    • Journal of the KSME
    • /
    • v.30 no.4
    • /
    • pp.310-321
    • /
    • 1990
  • 기체, 액체 고체상(相)이 섞여서 함께 흐르는 유동을 다상유동(multiphase flow)이라고 하며, 그 중 2개의 상이 섞여서 흐르는 경우를 2상유동(two-phase flow)이라고 일컫는다. 다상유동의 현상은 일상적인 생활에서도 많이 접하며(예컨대, 눈, 비가 내리는 현상, 안개, 황사, 스모그 현상 등) 특히 열전달과 관련하여 비등 및 응축을 수반하기도 한다. 특히 기계공학적 시스템에의 응 용측면에서는 다상유동의 전문지식이 증발기, 응축기 등 각종 열교환기기의 설계에 적용되므로 본 해설에서는 기체-액체(gas-liquid) 2상유동으로 그 내용을 한정하기로 한다. 2상(two-phase) 유동은 동일한 화학적 성분을 가진 물질이 서로 다른 상을 유지하면서 공존하여 흐른다는 점에서 2개의 다른 화학성분으로 구성된 2성분(two-component) 유동(예컨대 공기-물의 혼합유동)과는 엄밀하게는 다르나, 두 유동은 제반 형상이 유사하고, 해석 및 실험방법면에서도 많은 유사성이 있어서 총괄적으로 두 유동을 모두 2상유동이라고 칭하고 있다(1). 본 해설에서는 이러한 기체 -액체 2상유동분야에서 다루는 연구내용을 개괄적으로 소개하고자 한다.

  • PDF

Assessment of MARS Multi-dimensional Two-phase Turbulent Flow Models for the Nuclear System Analysis (발전소 계통해석을 위한 MARS 코드의 다차원 이상 난류 유동 모델 검증계산)

  • Lee S.M.;Lee U.C.;Bae S.W.;Chung B.D.
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.1-7
    • /
    • 2006
  • The multi-dimensional two-phase flow models were developed for analyze the multi-dimensional behaviors or nuclear systems. To verify the simple turbulence model, The single phase mixing problem in a rectangular slab was calculated and compared with the commercial CFD code results. That result shows a good agreement with the CFD result. And the RPI Air-water experiments were simulated to assess the two-phase turbulence model in the multi-dimensional component. The first calculated distribution or void-fraction is highly dispersed and diffusive. It was revealed that the main reason is undesirable stratification force in a horizontal stratified flow regimes. Therefore the horizontally stratified flow regime is deleted because the stratified flow regime is not expected in multi-dimensional flow. With the modification of the flow regime, the predicted flow patterns and void fraction profiles are in good agreement with the measured data.