• Title/Summary/Keyword: Two-Girder Bridge

Search Result 261, Processing Time 0.023 seconds

Damage assessment of shear connectors with vibration measurements and power spectral density transmissibility

  • Li, Jun;Hao, Hong;Xia, Yong;Zhu, Hong-Ping
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.257-289
    • /
    • 2015
  • Shear connectors are generally used to link the slab and girders together in slab-on-girder bridge structures. Damage of shear connectors in such structures will result in shear slippage between the slab and girders, which significantly reduces the load-carrying capacity of the bridge. Because shear connectors are buried inside the structure, routine visual inspection is not able to detect conditions of shear connectors. A few methods have been proposed in the literature to detect the condition of shear connectors based on vibration measurements. This paper proposes a different dynamic condition assessment approach to identify the damage of shear connectors in slab-on-girder bridge structures based on power spectral density transmissibility (PSDT). PSDT formulates the relationship between the auto-spectral densities of two responses in the frequency domain. It can be used to identify shear connector conditions with or without reference data of the undamaged structure (or the baseline). Measured impact force and acceleration responses from hammer tests are analyzed to obtain the frequency response functions at sensor locations by experimental modal analysis. PSDT from the slab response to the girder response is derived with the obtained frequency response functions. PSDT vectors in the undamaged and damaged states can be compared to identify the damage of shear connectors. When the baseline is not available, as in most practical cases, PSDT vectors from the measured response at a reference sensor to those of the slab and girder in the damaged state can be used to detect the damage of shear connectors. Numerical and experimental studies on a concrete slab supported by two steel girders are conducted to investigate the accuracy and efficiency of the proposed approach. Identification results demonstrate that damages of shear connectors are identified accurately and efficiently with and without the baseline. The proposed method is also used to evaluate the conditions of shear connectors in a real composite bridge with in-field testing data.

Structural Performance Evaluation of a Precast PSC Curved Girder Bridge Constructed Using Multi-Tasking Formwork

  • Kim, Sung-Jae;Kim, Jang-Ho Jay;Yi, Seong-Tae;Noor, Norhazilan Bin Md;Kim, Sung-Chul
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.1-17
    • /
    • 2016
  • Recently, advanced transit systems are being constructed to reduce traffic congestions in metropolitan areas. For these projects, curved bridges with various curvatures are required. Many curved bridges in the past were constructed using aesthetically unpleasant straight beams with curved slabs or expensive curved steel box girders with curved slabs. Therefore, many recent studies have been performed to develop less expensive and very safe precast prestressed concrete (PSC) curved girder. One method of reducing the construction cost of a PSC curved girder is to use a reusable formwork that can easily be adjusted to change the curvature and length of a girder. A reusable and curvature/dimension adjustable formwork called Multi-tasking formwork is developed for constructing efficient precast PSC curved girders. With the Multi-tasking formwork, two 40 m precast PSC box girders with different curvatures were constructed to build a two-girder curved bridge for a static flexural test to evaluate its safety and serviceability performance. The static flexural test results showed that the initial cracking load was 1400 kN, exceeding the design cracking load of 450 kN. Also, the code allowed deflection of 50 mm occurred at a load of 1800 kN, verifying the safety and serviceability of the precast PSC curved bridge constructed using the multi-tasking formwork.

MINNs for FE model updating of a steel box girder bridge (강박스 거더교의 FE 모델 개선을 위한 평균값 반복 신경망)

  • Vu, Thuy Dung;Cui, Jintao;Kim, Doo-Kie;Koo, Ki-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.57-60
    • /
    • 2011
  • Updating model parameters are required in order to simulate the actual behavior of the dynamic structure. A new strategy, mean-iterative neural networks (MINNs) has been proposed in this paper for model parameter updating of a steel box girder bridge. With new strategy for structural dynamic model updating, it offers many advantages such as potential savings of computational effort, more consistent in reaching convergence. The dynamic response obtained from the experimental test on a two span continuous bridge is used as the target for model updating. And the presented algorithm is applied to update the model parameters. These results show a good possible of using MINNs in practice for dynamic model updating.

  • PDF

Span limit and parametric analysis of cable-stayed bridges

  • Zhao, Xinwei;Xiao, Rucheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.271-282
    • /
    • 2019
  • The span record of cable-stayed bridges has exceeded 1,000 m, which makes research on the maximum possible span length of cable-stayed bridges an important topic in the engineering community. In this paper, span limit is discussed from two perspectives: the theoretical span limit determined by the strength-to-density ratio of the cable and girder, and the engineering span limit, which depends not only on the strength-to-density ratio of materials but also on the actual loading conditions. Closed form equations of both theoretical and engineering span limits of cable-stayed bridges determined by the cable and girder are derived and a detailed parametric analysis is conducted to assess the engineering span limit under current technical conditions. The results show that the engineering span limit of cable-stayed bridges is about 2,200 m based on materials used available today. The girder is the critical member restricting further increase in the span length; its compressive stress is the limiting factor. Approaches to increasing the engineering span limit are also presented based on the analysis results.

Vibration analysis of prestressed concrete bridge subjected to moving vehicles

  • Huang, M.;Liu, J.K.;Law, S.S.;Lu, Z.R.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.273-289
    • /
    • 2011
  • The vibration response of the bridges under the moving vehicular load is of importance for engineers to estimate the serviceability of existing bridges and to design new bridges. This paper deals with the three dimensional vibration analysis of prestressed concrete bridges under moving vehicles. The prestressed bridges are modeled by four-node isoparametric flat shell elements with the transverse shearing deformation taken into account. The usual five degrees-of-freedom (DOFs) per node of the element are appended with a drilling DOF to accommodate the transformation of the local stiffness and mass matrices to the global coordinates. The vehicle is modeled as a single or two-DOF system. A single-span prestressed Tee beam and two-span prestressed box-girder bridge are studied as the two numerical examples. The effects of prestress forces on the natural frequencies and dynamic responses of the bridges are investigated.

Numerical investigation on the wind stability of super long-span partially earth-anchored cable-stayed bridges

  • Zhang, Xin-jun;Yao, Mei
    • Wind and Structures
    • /
    • v.21 no.4
    • /
    • pp.407-424
    • /
    • 2015
  • To explore the favorable structural system of cable-stayed bridges with ultra-kilometer main span, based on a fully self-anchored cable-stayed bridge with 1400 m main span, a partially earth-anchored cable-stayed bridge scheme with the same main span is designed. Numerical investigation on the dynamic characteristics, aerostatic and aerodynamic stability of both two bridge schemes is conducted, and the results are compared to those of a suspension bridge with similar main span, and considering from the aspect of wind stability, the feasibility of using partially earth-anchored cable-stayed bridge in super long-span bridges with ultra-kilometer main span is discussed. Moreover, the effects of structural design parameters including the length of earth-anchored girder, the number of auxiliary piers in side span, the height and width of girder, the tower height etc on the dynamic characteristics, aerostatic and aerodynamic stability of a partially earth-anchored cable-stayed bridge are analyzed, and their reasonable values are proposed. The results show that as compared to fully self-anchored cable-stayed bridge and suspension bridge with similar main span, the partially earth-anchored cable-stayed bridge has greater structural stiffness and better aerostatic and aerodynamic stability, and consequently becomes a favorable structural system for super long-span bridges with ultra-kilometer main span. The partially earth-anchored cable-stayed bridge can achieve greater stiffness and better wind stability under the cases of increasing the earth-anchored girder length, increasing the height and width of girder, setting several auxiliary piers in side span and increasing the tower height.

A Study on the Analysis of PSC Box Girder Bridge Considering Construction Stage in Box Section (시공단계를 고려한 콘크리트-콘크리트 합성형 PSC 박스거더 교량의 해석)

  • 김영진;김병석;강재윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.694-700
    • /
    • 1998
  • PSC box bridge by MSS construction method may not be set at cross section at one step. Web and bottom flange(U member) would be set at first, top flange will be set later with a time lag. In this case, U member and top flange concrete have different strain history. As two different aged section behaves as the composite section, there would happen the redistribution of stress. This is come from time-dependent strain characteristics of concrete itself. In this study, two models are considered, one with considering the set time of cross section and the other without. By performing longitudinal analysis of two models on considering construction stage, the stress differences of two are compared. As the analysis results show a considerable differences in the stresses of cross section between two models, the set time of cross section is needed for rational design f PSC box girder bridge.

  • PDF

A Study on the Applicability of SCP Girder to Continuous Bridges (SCP 합성거더의 연속교 적용에 관한 연구)

  • Kim, Jung Ho;Lee, Sang Yoon;Park, Kyung Hoon;Hwang, Yoon Koog;Yoo, Gun Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.101-111
    • /
    • 2006
  • The SCP girder, which compensates for the shortcomings of conventional girders through the effective composition of concrete, steel, and PS tendon, has recently been developed and applied on real bridges. Developed as a simple-support type, it may be applied on simple-support and continuous bridges by connecting the simple-support SCP girders to the interior supports. A continuous SCP girder, which has structural and cost advantages over the simple-support SCP girder, is proposed in this study. Likewise proposed herein is a new method of constructing a continuous SCP girder, using segments of the girder sequentially. A two-span, half-scale specimen was designed and constructed to verify the propriety of the continuous SCP girder bridge. A static load test was also carried out, using this specimen, to examine the behavior of the continuous SCP girder. Based on the results of the study, it is expected that the continuous bridge that uses the continuous SCP girder can guarantee the structural safety of the simple-support SCP girder.

Behavior of Jointless Bridge of Steel Box Girder Type Due to Temperature Change (온도변화에 따른 무신축이음 강상자형 교량의 거동 분석)

  • 조남훈;이성우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.95-102
    • /
    • 1997
  • Jointless bridge is a new construction method applicable to bridge of short length. In the jointless bridge expansion of superstructure due to thermal effect was absorbed in the flexible pile-type abutment in stead of expansion joint in the conventional bridges. By removing expansion joint, it retards deterioration and extends life time of bridge. In this paper, jointless bridge of steel box girder type was studied through finite element analysis. Stress variations of superstructure and pile due to thermal effect was studied for the two span continuous integral bridge of 80m length and the results of analysis was presented.

  • PDF

Capacity evaluation of PC-slab composite actions for the railway steel plate girder according to an experimental construction (PC-Slab 합성 철도판형교 유도상화 시험부설에 따른 성능 비교평가)

  • Min, Kyung-Ju;Lee, Sung-Uk;Choi, Hyung-Soo;Woo, Yong-Keun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.697-706
    • /
    • 2011
  • There are more than 800 railway steel plate girder bridges which are in use and the total length is approximately 50 km. Among these, it shall be pointed out that non-ballast rail systems which lay on wood sleepers are the most critical members. To strengthen this type of structures, mainly two methods have been applied. The first one is the most typical method which is to replace the girders with slab girder system or steel composite girders and to add ballast. It is not uncommon that the construction cost of substructure is more than ten time higher than that of superstructures and even in this case, the structural uncertainty for the substructures is not diminished. To resolve above mentioned problems, new method was developed to rehabilitate railway steel girder bridge by adding PC-slab using transport equipment. Using this method, substructure strengthen is rarely required because the additional weight to the bridge superstructure is only up to 1.0t/m. Also it was possible to save the construction cost by reducing construction duration and by simplifying the construction process. Experimental construction was performed for Jewon bridge and measurements were performed before and after construction to verify the bridge capacity.

  • PDF