• Title/Summary/Keyword: Two-Dimensional Attention

Search Result 196, Processing Time 0.026 seconds

Two-fluid equations for two-phase flows in moving systems

  • Kim, Byoung Jae;Kim, Myung Ho;Lee, Seung Wook;Kim, Kyung Doo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1504-1513
    • /
    • 2019
  • Recently, ocean nuclear reactors have received attention due to enhanced safety features. The movable and transportable characteristics distinguish ocean nuclear reactors from land-based nuclear reactors. Therefore, for safety/design analysis of the ocean reactor, the thermos-hydraulics must be investigated in the moving system. However, there are no studies reporting the general two-fluid equations that can be used for multi-dimensional simulations of two-phase flows in moving systems. This study is to systematically formulate the multi-dimensional two-fluid equations in the non-inertial frame of reference. To demonstrate the applicability of the formulated equations, we perform a total of six different simulations in 2D tanks with translational and/or rotational motions.

Three-dimensional Nanoporous Graphene-based Materials and Their Applications (3차원 나노 다공성 그래핀의 제조와 응용)

  • Jung, Hyun;Kang, Yein
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.243-255
    • /
    • 2019
  • Graphene, a two-dimensional material with a single atomic layer, has recently become a major research focus in various applications such as electronic devices, sensors, energy storage, catalysts, and adsorbents, because of its large theoretical surface area, excellent electrical conductivity, outstanding chemical stability, and good mechanical properties. Recently, 3D nanoporous graphene structures have received tremendous attention to expand the application of 2D graphene. Here, we overview the synthesis of 3D nanoporous graphene network structure with two-dimensional graphite oxide sheets, the control of porous parameters such as specific surface area, pore volume and pore size etc, and the modification of electronic structure by heteroatom doping along with its various applications. The 3D nanoporous graphene shows superior performance in diverse applications as a promising key material. Consequently, 3D nanoporous graphene can lead the future for advanced nanotechnology.

Two-Dimensional Photonic Bandgap Nanolasers (2차원 광밴드갭 나노레이저)

  • Lee, Y. H.;Hwang, J-K;H.Y. Ryu;Park, H. K.;D. J. Shin
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.2-3
    • /
    • 2001
  • Characteristics of two-dimensional slab photonic crystal lasers will be summarized. Room temperature c.w operation is demonstrated at 1.6 $\mu\textrm{m}$ by using InGaAsP slab-waveguide triangular photonic crystal on top of wet-oxidized aluminum oxide. Recently, 2-D PBG structures have attracted a great deal of attention due to their simplicity in fabrication and theoretical study as compared to the three-dimensional counterparts [1]. Air-guided 2-D slab PBG lasers were reported by Caltech group (2). However, this air-slab structure is mechanically fragile and thermally unforgiving. Therefore, a new structure that can remove this thermal limitation is dearly sought after for 2-D PBG laser to have practical meaning. In this talk, we report room-temperature continuous operation of 2-D photonic bandgap lasers that are thermally and mechanically stable.(omitted)

  • PDF

Development a numerical model of flow and contaminant transport in layered soils

  • Ahmadi, Hossein;Namin, Masoud M.;Kilanehei, Fouad
    • Advances in environmental research
    • /
    • v.5 no.4
    • /
    • pp.263-282
    • /
    • 2016
  • Contaminant transport in groundwater induces major threat and harmful effect on the environment; hence, the fate of the contaminant migration in groundwater is seeking a lot of attention. In this paper a two dimensional numerical flow and transport model through saturated layered soil is developed. Groundwater flow and solute transport has been simulated numerically using proposed model. The model implements the finite volume time splitting method to discretize the main equations. The performance, accuracy and efficiency of the out coming numerical models have been successfully examined by two test cases. The verification test cases consist of two-dimensional, groundwater flow and solute transport. The final purpose of this paper is to discuss and compare the shape of contaminant plume in homogeneous and heterogeneous media with different soil properties and control of solute transport using a zone for minimizing the potential of groundwater contamination; furthermore, this model leads to select the effective and optimum remedial strategies for cleaning the contaminated aquifers.

Two Dimensional Intersymbol Interference Compensation for Bit Patterned Media (비트 패턴드 미디어를 위한 2차원 인접 심볼 간 간섭 보상)

  • Jeong, Seongkwon;Lee, Jaejin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.15-20
    • /
    • 2015
  • Bit patterned media (BPM) is a high capacity storage system and has attracted a great deal of attention as next generation data storage. When BPM is made with high density, the space between the islands narrows, because BPM records one bit in an island. For this reason, BPM has inter-symbol interference in all directions, unlike in current storage systems where it is in only one direction. In this paper, we propose an equation for compensating two-dimensional ISI. We conduct experiments on track misregistration. When using the proposed inter-symbol interference preprocessing, the BER performance is improved, regardless of the amount of track misregistration.

Vapor Deposition Techniques for Synthesis of Two-Dimensional Transition Metal Dichalcogenides

  • Song, Jeong-Gyu;Park, Kyunam;Park, Jusang;Kim, Hyungjun
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.119-125
    • /
    • 2015
  • Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted significant attention due to their unique and exotic properties attributed to their low dimensionality. In particular, semiconducting 2D TMDCs such as $MoS_2$, $WS_2$, $MoSe_2$, and $WSe_2$ have been demonstrated to be feasible for various advanced electronic and optical applications. In these regards, process to synthesize high quality 2D TMDCs layers with high reliability, wafer-scale uniformity, controllable layer number and excellent electronic properties is essential in order to use 2D TMDCs in practical applications. Vapor deposition techniques, such as physical vapor deposition, chemical vapor deposition and atomic layer deposition, could be promising processes to produce high quality 2D TMDCs due to high purity, thickness controllability and thickness uniformity. In this article, we briefly review recent research trend on vapor deposition techniques to synthesize 2D TMDCs.

Analysis of Chinese Video Website Barrage Language Based On the Influence Of The ACGN Culture

  • Yan, JiHui;Pan, Yang;Yun, Taesoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.195-207
    • /
    • 2021
  • In recent years, with the rapid growth of China's animation industry, the two-dimensional culture and consumption have been immersed in the daily lives of young people. The two-dimensional culture that mainly exists on young people is gradually entering the public's field of vision, making the two-dimensional culture not It is only restricted to the fixed fan circle, but is known to more people outside the circle. At the same time, the "barrage" (screen text) cultures in video websites has become popular with some film and television works, Internet terms, etc., and has attracted the attention on mainstream culture. On the one hand, its cultural products have appeared on traditional mainstream video websites and advertisements on provincial satellite TV. And in the program, on the other hand, a small part of the screen text and cultural terms are also used by some celebrities and other ordinary people who don't understand the meaning of the terms at all, and have caused widespread dissemination. Sometimes the video website itself is also mentioned, which obviously shows a difference. The tendency towards a kind of screen texts subculture to penetrate the mainstream culture.

Research trends of MXenes as the Next-generation Two-dimensional Materials (차세대 2차원 소재, MXenes의 연구 동향)

  • Lee, Hojun;Yun, Yejun;Jang, Jinkwang;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.150-163
    • /
    • 2021
  • Interest in eco-friendly materials with high efficiencies is increasing significantly as science and technology undergo a paradigm shift toward environment-friendly and sustainable development. MXenes, a class of two-dimensional inorganic compounds, are generally defined as transition metal carbides or nitrides composed of few-atoms-thick layers with functional groups. Recently MXenes, because of their desirable electrical, thermal, and mechanical properties that emerge from conductive layered structures with tunable surface terminations, have garnered significant attention as promising candidates for energy storage applications (e.g., supercapacitors and electrode materials for Li-ion batteries), water purification, and gas sensors. In this review, we introduce MXenes and describe their properties and research trends by classifying them into two main categories: transition metal carbides and nitrides, including Ti-based MXenes, Mo-based MXenes, and Nb-based MXenes.

Development of dynamic motion models of SPACE code for ocean nuclear reactor analysis

  • Kim, Byoung Jae;Lee, Seung Wook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.888-895
    • /
    • 2022
  • Lately, ocean nuclear power plants have attracted attention as one of diverse uses of nuclear power plants. Because ocean nuclear power plants are movable or transportable, it is necessary to analyze the thermal hydraulics in a moving frame of reference, and computer codes have been developed to predict thermal hydraulics in large moving systems. The purpose of this study is to incorporate a three dimensional dynamic motion model into the SPACE code (Safety and Performance Analysis CodE) so that the code is able to analyze thermal hydraulics in an ocean nuclear power plant. A rotation system that describes three-dimensional rotations about an arbitrary axis was implemented, and modifications were made to the one-dimensional momentum equations to reflect the rectilinear and rotational acceleration effects. To demonstrate the code's ability to solve a problem utilizing a rotational frame of reference, code calculations were conducted on various conceptual problems in the two-dimensional and three-dimensional pipeline loops. In particular, the code results for the three-dimensional pipeline loop with a tilted rotation axis agreed well with the multi-dimensional CFD results.

TWO DIMENSIONAL SIMULATION OF UNSTEADY CAVITATING FLOW IN A CASCADE

  • Kajishima T.;Ohta T.;Shin B. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.179-182
    • /
    • 2005
  • We have developed a numerical scheme to reproduce the unsteady flows with cavitation by the finite-difference method. The evolution of cavitation is represented by the source/sink of vapor phase in the incompressible liquid flow. The pressure-velocity coupling is based on the fractional-step method for incompressible fluid flows, in which the compressibility is taken into account through the low Mach number assumption. We applied our method for the cavitating flows in a two-dimensional cascade, which approximates the portion near the tip of inducer in liquid-fuel engine. Particular attention was focused on the influence of turbulence model in this report. Using an eddy viscosity model, although it was not an optimized one for our purpose, the agreement with the experimental observation was improved.

  • PDF