DOI QR코드

DOI QR Code

Research trends of MXenes as the Next-generation Two-dimensional Materials

차세대 2차원 소재, MXenes의 연구 동향

  • Lee, Hojun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Yun, Yejun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Jang, Jinkwang (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Byun, Jongmin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이호준 (서울과학기술대학교 신소재공학과) ;
  • 윤예준 (서울과학기술대학교 신소재공학과) ;
  • 장진광 (서울과학기술대학교 신소재공학과) ;
  • 변종민 (서울과학기술대학교 신소재공학과)
  • Received : 2021.03.20
  • Accepted : 2021.03.21
  • Published : 2021.04.28

Abstract

Interest in eco-friendly materials with high efficiencies is increasing significantly as science and technology undergo a paradigm shift toward environment-friendly and sustainable development. MXenes, a class of two-dimensional inorganic compounds, are generally defined as transition metal carbides or nitrides composed of few-atoms-thick layers with functional groups. Recently MXenes, because of their desirable electrical, thermal, and mechanical properties that emerge from conductive layered structures with tunable surface terminations, have garnered significant attention as promising candidates for energy storage applications (e.g., supercapacitors and electrode materials for Li-ion batteries), water purification, and gas sensors. In this review, we introduce MXenes and describe their properties and research trends by classifying them into two main categories: transition metal carbides and nitrides, including Ti-based MXenes, Mo-based MXenes, and Nb-based MXenes.

Keywords

Acknowledgement

이 연구는 서울과학기술대학교 교내연구비의 지원으로 수행되었습니다.

References

  1. C. Soldano, A. Mahmood and E. Dujardin: Carbon, 48 (2010) 2127. https://doi.org/10.1016/j.carbon.2010.01.058
  2. K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva and A. Firsov: Science, 306 (2004) 666. https://doi.org/10.1126/science.1102896
  3. X. Li, X. Wang, L. Zhang, S. W. Lee and H. Dai: Science, 319 (2008) 1229. https://doi.org/10.1126/science.1150878
  4. N. Savage: IEEE Spectr., 46 (2009) 20. https://doi.org/10.1109/MSPEC.2009.5210033
  5. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi and M. W. Barsoum: Adv. Mater., 23 (2011) 4248. https://doi.org/10.1002/adma.201102306
  6. R. M. Ronchi, J. T. Arantes and S. F. Santos: Ceram. Int., 45 (2019) 18167. https://doi.org/10.1016/j.ceramint.2019.06.114
  7. W. H. K. Ng, E. S. Gnanakumar, E. Batyrev, S. K. Sharma, P. K. Pujari, H. F. Greer, W. Zhou, R. Sakidja, G. Rothenberg, M. W. Barsoum and N. R. Shiju: Angew. Chem. Int. Ed. Eng., 57 (2018) 1485. https://doi.org/10.1002/anie.201702196
  8. M. W. Barsoum and M. Radovic: Annu. Rev. Mater. Res., 41 (2011) 195. https://doi.org/10.1146/annurev-matsci-062910-100448
  9. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi and M. W. Barsoum: ACS Nano, 6 (2012) 1322. https://doi.org/10.1021/nn204153h
  10. B. Anasori, M. R. Lukatskaya and Y. Gogotsi: Nat. Rev. Mater., 2 (2017) 16098. https://doi.org/10.1038/natrevmats.2016.98
  11. K. Hantanasirisakul, M. Zhao and P. Urbankowski, J. Halim, B. Anasori, S. Kota, C. E. Ren, M. W. Barsoum and Y. Gogotsi: Adv. Electron. Mater., 2 (2016) 1600050. https://doi.org/10.1002/aelm.201600050
  12. M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi and M. W. Barsoum: J. Am. Chem. Soc., 135 (2013) 15966. https://doi.org/10.1021/ja405735d
  13. X. Xie, K. Kretschmer, B. Anasori, B. Sun, G. Wang and Y. Gogotsi: ACS Appl. Nano Mater., 1 (2018) 505. https://doi.org/10.1021/acsanm.8b00045
  14. C. E. Ren, M. Zhao, T. Makaryan, J. Halim, M. Boota, S. Kota, B. Anasori, M. W. Barsoum and Y. Gogotsi: Chemelectrochem, 3 (2016) 689. https://doi.org/10.1002/celc.201600059
  15. X. Xie, M. Zhao, B. Anasori, K. Maleski, C. E. Ren, J. Li, B. W. Byles, E. Pomerantseva, G. Wang and Y. Gogotsi: Nano Energy, 26 (2016) 513. https://doi.org/10.1016/j.nanoen.2016.06.005
  16. Z. Ling, C. E. Ren, M. Zhao, J. Yang, J. M. Giammarco, J. Qiu, M. W. Barsoum and Y. Gogotsi: Proc. Natl. Acad. Sci. USA, 111 (2014) 16676. https://doi.org/10.1073/pnas.1414215111
  17. M. Zhao, C. E. Ren, Z. Ling, M. R. Lukatskaya, C. Zhang, K. L. Van Aken, M. W. Barsoum and Y. Gogotsi: Adv. Mater., 27 (2014) 339. https://doi.org/10.1002/adma.201404140
  18. T. H. Park, S. G Yu, M. Koo, H. R. Kim, E. H. Kim, J. E. Park, B. R. Ok, B. G. Kim, S. H. Noh, C. H Park, E. K. Kim, C. M. Koo and C. M. Park: ACS Nano, 13 (2019) 6835. https://doi.org/10.1021/acsnano.9b01602
  19. A. Agresti, A. Pazniak and S. Pescetelli, A. Di Vito, D. Rossi, A. Pecchia, M. Auf der Maur, A. Liedl, R. Larciprete, D. V. Kuznetsov, D. Saranin and A. Di Carlo: Nat. Mater., 18 (2019) 1228. https://doi.org/10.1038/s41563-019-0478-1
  20. X. Xie, C. Chen, N. Zhang, Z. Tang, J. Jiang and Y. Xu: Nat. Sustain., 2 (2019) 856. https://doi.org/10.1038/s41893-019-0373-4
  21. L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang, J. Xue, L. Ding, S. Wang, J. Caro and Y. Gogotsi: Nat. Commun., 9 (2018) 155. https://doi.org/10.1038/s41467-017-02529-6
  22. Y. Gogotsi and B. Anasori: ACS Nano, 13 (2019) 8491. https://doi.org/10.1021/acsnano.9b06394
  23. Y. Gao, L. Wang, Z. Li, Y. Zhang, B. Xing, C. Zhang and A. Zhou: J. Adv. Ceram., 4 (2015) 130. https://doi.org/10.1007/s40145-015-0143-3
  24. C. Zhang, L. McKeon, M. P. Kremer, S. H. Park, O. Ronan, A. S. Ascaso, S. Barwich, C. O Coileain, N. McEvoy, H. C. Nerl, B. Anasori, J. N. Coleman, Y. Gogotsi and V. Nicolosi: Nat. Commun., 10 (2019)
  25. H. Tang, W. Li, L. Pan, C. P. Cullen, Y. Liu, A. Pakdel, D. Long, J. Yang, N. McEvoy, G. S. Duesberg, V. Nicolosi and C. Zhang: Adv. Sci., 5 (2018) 1800502. https://doi.org/10.1002/advs.201800502
  26. S. J. Kim, H. J. Koh, C. E. Ren, O. Kwon, K. Maleski, S. Y. Cho, B. Anasori, C. K. Kim, Y. K. Choi, J. Kim, Y. Gogotsi and H. T. Jung: ACS Nano, 12 (2018) 986. https://doi.org/10.1021/acsnano.7b07460
  27. S. Kumar, Y. Lei, N. H. Alshareef, M. A. Q. Lopez and K. N. Salama: Biosens. Bioelectron., 121 (2018) 243. https://doi.org/10.1016/j.bios.2018.08.076
  28. J. Halim, S. Kota, M. R. Lukatskaya, M. Naguib, M. Q. Zhao, E. J. Moon, J. Pitock, J. Nanda, S. J. May, Y. Gogotsi and M. W. Barsoum: Adv. Funct. Mater., 26 (2016) 3118. https://doi.org/10.1002/adfm.201505328
  29. A. D. Handoko, H. Chen, Y. Lum, Q. Zhang, B. Anasori and Z. W. She: Science, 23 (2020) 101181.
  30. D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu, J. Chen, W. Liu, W. Zhou and K. P. Loh: Adv. Mater., 29 (2017) 1700072. https://doi.org/10.1002/adma.201700072
  31. J. Lei, A. Kutana and B. I. Yakobson: J. Mater. Chem. C, 5 (2017) 3438. https://doi.org/10.1039/C7TC00789B
  32. P. A. Rasheed, R. P. Pandey, T. Gomez, K. A. Jabbar., K. Prenger, M. Naguib, B. Aissa and K. A. Mahmoud: Electrochem. Commun., 119 (2020) 106811. https://doi.org/10.1016/j.elecom.2020.106811
  33. L. Lorencova, T. Bertok, E. Dosekova, A. Holazova, D. Paprckova, A. Vikartovska, V. Sasinkova, J. Filip, P. Kasak, M. Jerigova, D. Velic, K. A. Mahmoud and J. Tkac: Electrochim. Acta, 235 (2017) 471. https://doi.org/10.1016/j.electacta.2017.03.073
  34. J. Zhu, A. Chroneos and U. Schwingenschlogl: Phys. Status Solidi Rapid Res. Lett., 9 (2015) 726. https://doi.org/10.1002/pssr.201510358
  35. I. R. Shein and A. L. Ivanovskii: Comput. Mater. Sci., 65 (2012) 104. https://doi.org/10.1016/j.commatsci.2012.07.011
  36. M. Naguib, V. N. Mochalin, M. W. Barsoum and Y. Gogotsi: Adv. Mater., 26 (2014) 992. https://doi.org/10.1002/adma.201304138
  37. P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota, P. L. Walsh, M. Zhao, V. B. Shenoy, M. W. Barsoum and Y. Gogotsi: Nanoscale, 8 (2016) 11385. https://doi.org/10.1039/c6nr02253g
  38. Y. Li, Y. Guo, W. Chen, Z. Jiao and S. Ma: J. Mater. Sci., 54 (2019) 493. https://doi.org/10.1007/s10853-018-2854-7