• Title/Summary/Keyword: Two parallel-plate

Search Result 202, Processing Time 0.029 seconds

Cavity-type and Parasitic-type Couplings through a Harrow Slit in A Parallel-Plate Waveguide with a Conducting Strip (평행평판도파관의 좁은 슬릿을 통한 도체 스트립과의 캐비티형 결합과 기생형 결합)

  • 이종익;고지환;조영기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.384-392
    • /
    • 2003
  • In this study, the electromagnetic coupling through a narrow transverse slit in the upper wall of a parallel-plate waveguide(PPW) covered by a dielectric slab with a nearby conducting strip on the slab is considered. Two contrastive coupling phenomena, cavity-type and parasitic-type, observed in the geometry have been distinguished by differences in the resonant strip lengths and offset positions, induced strip current, radiation pattern, frequency bandwidth, and electromagnetic field distributions near the coupling slit.

Design of Power Plane for Suppressing Spurious Resonances in High Speed PCBs

  • Oh Seung-Seok;Kim Jung-Min;Yook Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.62-70
    • /
    • 2006
  • This paper presents a new power plane design method incorporating a single geometry derived from a unit cell of photonic bandgap(PBG) structure. This method yields constantly wide suppression of parallel plate resonances from 0.9 GHz to 4.2 GHz and is very efficient to eliminate PCB resonances in a specified frequency region to provide effective suppression of simultaneous switching noise(SSN). It is shown that with only two cells the propagation of unwanted high frequency signals is effectively suppressed, while it could provide continuous return signal path. The measured results agree very well with theoretically predicted ones, and confirm that proposed method is effective for reducing EMI, with measured near-field distribution. The proposed topology is suitable for design of high speed digital system.

Experimental Study on Gas-Water Fracture Relative Permeability Measurement in a Single-Fractured Parallel Plate Model (단일 균열 평판 모델에서 가스-물 균열 상대투과도 측정에 관한 실험적 연구)

  • 이원석;성원모;한일영
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.221-226
    • /
    • 2000
  • In this study, the characteristics of gas-water relative permeability curves in a single fractured-plate according to the various aperture size were analyzed by using the Hele-Shaw type glass plate model. The plate was made of glasses for the observation of the two-phase flow pattern, and seven cases were set up based on the aperture size in the range of field scale from 30 to $120\mum$. The experiment was conducted by steady-state method, and the water saturation was determined more accurately by the developed digital image process technique. The empirical equations of relative permeability to gas and water for single fractured-plate were correlated by using the aperture size which directly affects the two-phase flow pattern and critical saturation.

  • PDF

A Numerical Study on the Characteristic of Mixed Convection Between Inclined Parallel Plates (경사진 평행평판 내 혼합대류 열전달 특성에 관한 수치적 연구)

  • Piao, R.L.;Bae, D.S.;Kwon, O.B.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.29-35
    • /
    • 2006
  • Two-dimensional numerical simulation has been performed to investigate mixed convection heat transfer between inclined parallel plates with bottom-heated and top-cooled uniformly. The ratio of parallel plate length to height is 9.33, Prandtl number is 909(that of silicone oil at 298K) and Rayleigh number is 8600. In the ranges of the Reynolds number Re from 0 to 1.8 and the angle of inclination ${\theta}$ from 0 to 90 degree. The governing equations are discretized using the finite volume method. In this study, the effects of the Reynolds number, the angle of inclination, and the local and mean Nusselt numbers are presented and discussed. It is found that the periodic flow of mixed convection between inclined parallel plates is shown at $0^{\circ}{\leq}\;{\theta}<30^{\circ},\;Re<0.063$, and the flow pattern can be classified into three patterns which depend on Reynolds number and the angle of inclination. The minimum average Nusselt numbers occur at Re=0.05 regardless of the angle of inclination.

  • PDF

Simulation of Two-Phase Fluid Flow in a Single Fracture Surrounding an Underground LPG Storage Cavern: I. Numerical Model Development and Parallel Plate Test (지하 LPG 저장공동에 인접한 단일절리에서의 이상유체거동해석: I. 수치모형의 개발 및 모형실험)

  • Han, Il-Yeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.439-448
    • /
    • 2001
  • A two-dimensional finite difference numerical model was developed in order to simulate two-phase fluid flow in a single fracture. In the model, variation of viscosity with pressure and that of relative permeability with water saturation can be treated. For the numerical solution, IMPES method was used, from which the pressure and the saturation of water and gas were computed one by one. Seven cases of model test using parallel plates for a single fracture were performed in order to obtain the characteristic equation of relative permeability which would be used in the numerical model. it was difficult to match the characteristic curves of relative permeability from the model tests with the existing emperical equations, consequently a logistic equation was proposed. As the equation is composed of the parameters involving aperture size, it can be applied to any fracture.

  • PDF

An Experimental Study on Thermal Performance of Thermosyphon Solar Hot Water System (자연대류형 태양열 온수급탕 시스템의 열적성능에 관한 실험적 연구)

  • Jeon, H.S.;Kang, Y.H.;Yoon, H.K.;Kwak, H.Y.
    • Solar Energy
    • /
    • v.9 no.2
    • /
    • pp.3-13
    • /
    • 1989
  • This study has been conducted to measure the performance of 5 thermosyphon solar water heaters suitable for Korean climate and to develop the most optimum system. Each system consists of two flat plate collectors of $4'{\times}8'$ (or three flat plate collectors of $3'{\times}6'$) connected in parallel and a storage tank of $300{\ell}$ capacity. Among the tested systems, the configuration that has two flat plate collectors of $4'{\times}8'$ and a horizontal tank-in-tank type storage unit with internal fins (C system) showed the highest performance.

  • PDF

A Study of Small Radiation Dosimeter by Using Microfilm and Carbon Elecrtode (마이크로필름과 탄소막 전극을 이용한 소형방사선측정기 개발에 관한 연구)

  • 신교철;윤형근
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.59-62
    • /
    • 2004
  • We developed very small parallel plate radiation detector by using our existing experience of mating radiation dosimeter and capability of analyzing characteristics of dosimeter. The radiation detector was consisted of microfilm and carbon electrode. The detector was parallel plate type of all-filled ionization chamber. The ionization chamber had been fabricated using an acrylic plate for the air cavity and carbon coated microfilm for electrical configuration. The alr gap between two electrodes was 0.48 mm. The diameters of collect electrode and guard electrode were 3.3 mm, 5 mm respectively. The diameter of high voltage electrode was 5 mm. Nominal sensitive volume of the chamber was 0.016 ㎤. The major parameters of the chamber characteristics such as leakage current, reproducibility, dose rate effect, and polarity effect were measured. The experimental results were as followings. Leakage current was 0.1 pA. Standard deviation of reproducibility was less than 0.1%. Dose rate effect was less than 1.5%. Polarity effect was less than 2.4%. These data were comparable to those of commercially available dosimetric system for QA-purpose. As the result, we found that the radiation detector consisting of the ionization chamber, microfilm and carbon electrode, was satisfactory for the purpose of the small field dosimetry in size and characteristics. In the future, We will try to refine the dosimeter for use in very small volume.

  • PDF

Forced Convection Cooling Across Rectangular Blocks in a Parallel Channel (블럭이 부착된 수평 유로에서의 강제대류 열전달 해석)

  • 조한승;유재석
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.251-257
    • /
    • 1993
  • The purpose of this study is to obtain an improved interpretation of heat transfer phenomena between blocks and fluids in the parallel conducting plates. Flow is two-dimensional, incompressible steady laminar flow over rectangular blocks, representing finite heat source on parallel plate. Heat transfer phenomena, temperature of blocks and heat transfer into the flow field are investigated for different spacings between blocks and Reynolds numbers. Results indicate that Nusselt number on the far upstream corner of the block was higher than that of any part of the block. As Reynolds number and spacings of blocks increased, Nusselt number increased. The distribution of local Nusselt number on the top surface of the conducting plate is similar to the case with insulated plate. Temperature of the block which has heat source in half cubage was approximately twice as high as temperature of the block which has heat source in whole cubage. As Reynolds number and spacings of blocks increased, overall temperature decreased. The peak value of block temperature occurred at position shifted to the right or upper right from center. The maximum temperature of block can be expressed as a function of Reynolds number, spacings between blocks, position of maximum temperature of each block and then it is possible to predict the maximum temperature of blocks.

  • PDF

A Study on the Efficient Germination of Barley Seed using Electrostatic Field (정전기장을 이용한 보리종자의 효율적 발아에 관한 연구)

  • Dong-Hee Park
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.68-75
    • /
    • 2023
  • This paper discusses methods for increasing the germination rate of barley seeds using low direct and alternating current power below 110V. The experimental apparatus used here is a parallel plate, with the bottom surface of the plate designed to be wider than the top surface to increase the size of the electrostatic field. As a result, three different magnitudes of electrostatic fields were created on the plates: the first ranging from 400V/cm to 600V/cm, the second from 600V/cm to 900V/cm, and the third from 2200V/cm to 2400V/cm. The finite difference method was applied to analyze the electrostatic field inside the parallel plate. The plant seeds used in the experiments were barley seeds produced domestically. The average germination rate of barley seeds using the presented electrostatic field in this paper was 57%, while it was 65% when using a microwave of 2.45GHz, compared to a control group with a result of 31%. An important difference between using the electrostatic field and the 2.45GHz microwave is the dry method and wet method. When applying these two methods to practical seed germination, it is necessary to consider the advantages and disadvantages of each experimental approach and choose the appropriate method accordingly.

  • PDF

Particle Charging and Collection in Two-Stage, Parallel-Plate Electrostatic Precipitators (2단 평행판 정전식 집진기에서의 입자하전 및 포집)

  • 오명도;유경훈;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.432-445
    • /
    • 1994
  • From a theoretical analysis point of view, the 2-stage precipitator is decomposed into two units: charging cell and collecting cell. Collection efficiency predictions of the two-stage parallel-plate electrostatic precipitator have been performed theoretically incorporating with the charging and the collecting cells. Particle trajectorise passing the charging cell have been modeled as a simple one. Particle charge distribution at the outlet of the charging cell is calculated through integration of the present unipolar combined charging rate along the entire particle trajectory, and average charge of particles at the outlet of the charging cell is obtained from the particle charge distribution. As for the collecting cell, the diminution of particle concentration along the longitudinal direction of the collecting cell is investigated considering the conventional Deutsch's theory and the laminar theory. One should note that the collection efficiency formula derived is based on monodisperse aerosols. It has been confirmed through the analysis that predictions of particle charge by applying White's unipolar diffusion charging theory overpredict actual cases in the continuum regime, while predictions by Fuch's unipolar diffusion charging theory indicate the reasonable result in the same regime. Theoretical predictions of collection efficiency are also compared with the available experimental results. Comparisons show that the experimental results are consistently located in the collection efficiency region bounded by the two limits, the Deutsch and the laminar collection efficiencies. Finally design parameters of the 2-stage electrostatic precipitator have been investigated systematically through the one-variable-at-a-time method in terms of collection efficiency. Applied voltages on the corona wire of the charging cell and the plate of the collecting cell, and the average air velocity have been selected as the design parameters.