• Title/Summary/Keyword: Two Degree of Freedom Robust Controller

Search Result 51, Processing Time 0.028 seconds

Robust 2 D.O.F. Controller for the Precesses with dead-time (시간지연을 갖는 프로세서의 견실한 2자유도 제어기)

  • 최주용;배종일;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.319-319
    • /
    • 2000
  • In this paper, A dead-time compensator (DTC) for the processes with long dead-time is proposed. The processes which consist of dead-time, time-constant, gain are estimated by the linear least squares method in the frequency domain. A Smith predictor(SP) modified by including a filter becomes a two degree of freedom DTC. So the proposed DTC can yield the desirable setpoint and load disturbance responses separately. PI controller is used for the primary controller and the filter is tuned to be robust. Simulation examples demonstrate the properties of the proposed DTC.

  • PDF

Trajectory Control of Direct Drive Robot with Two-Degree-of-Freedom Compensator (2자유도 보상기를 이용한 직접 구동형 로봇의 궤도제어)

  • Shin, Jeong-Ho;Fujiune, Konji;Suzuki, Tatsuya;Okuma, Shigeru
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.304-306
    • /
    • 1993
  • In this paper, the authors show a link between a heuristic controller used in industry and a theoretical generalized controller. First, we clarify the internal structure of the generalized two-degree-of-freedom controller which yields a link between the theoretical researches and the practical applications. Secondly, we indicate how to blend identification and control together without any modification of the controller. This is in fact the problem of closed-loop identification. Thirdly, we propose a design technique of a free parameter taking into account a robust stability based on the information obtained from the identification. Finally, we apply the proposed algorithm to trajectory control of DD robot.

  • PDF

Design of a Robust Controller for Uncertain Robot Manipulators with Torque Saturation using a Fuzzy Algorithm (토크 한계를 갖는 불확실한 로봇 매니퓰레이터의 퍼지 논리를 이용한 강인 제어기의 설계)

  • 최형식;박재형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.138-144
    • /
    • 2000
  • Robot manipulators, which are nonlinear structures and have uncertain system parameters, have complex in dynamics when are operated in unknown environment. To compensate for estimate errors of the uncertain system parameters and to accomplish the desired trajectory tracking, nonlinear robust controllers are appropriate. However, when estimation errors or tracking errors are large, they require large input torques, which may not be satisfied due to torque limits of actuators. As a result, their stability can not be guaranteed. In this paper, a new robust control scheme is presented to solve stability problem and to achieve fast trajectory tracking in the presence of torque limits. By using fuzzy logic, new desired trajectories which can be reduced are generated based on the initial desired trajectory, and torques of the robust controller are regulated to not exceed torque limits. Numerical examples are shown to validate the proposed controller using an uncertain two degree-of-freedom underwater robot manipulator.

  • PDF

Overlapping Decentralized Robust EA Control Design for an Active Suspension System of a Full Car Model (전차량의 능동 현가장치 제어를 위한 중복 분산형 견실 고유구조 지정 제어기 설계)

  • Jung, Yong-Ha;Choi, Jae-Weon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.206-213
    • /
    • 2001
  • An overlapping decentralized robust EA(eigenstructure assignment) controller is designed for an active suspension system of a vehicle based on a full car model with 7-degree of freedom. Using overlapping decomposition, the full car model is decentralized by two half car models. For each half car model, an effective and disturbance suppressible controller can be obtained by assigning appropriately a left eigenstructure of the system. The performance of the proposed overlapping decentralized robust EA controller is compared with that of a conventional centralized EA controller through computer simulations.

  • PDF

Robust Control of Robot Manipulators using Visual Feedback (비젼을 이용한 로봇 매니퓰레이터의 강인 제어)

  • Ji, Min-Seok;Lee, Yeong-Chan;Lee, Gang-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.247-250
    • /
    • 2003
  • In this paper, we propose a robust controller for motion control of n-link robot manipulators using visual feedback. The desired joint velocity and acceleration is obtained by the feature-based visual systems and is used in the joint velocity control loop for trajectory control of the robot manipulator. We design a robust controller that compensates for bounded parametric uncertainties of robot dynamics. The stability analysis of robust joint velocity control system is shown by Lyapunov Method. The effectiveness of the proposed method is shown by simulation results on the 5-link robot manipulators with two degree of freedom.

  • PDF

A Design of Linear Multivariable Robust-Servo-System by Two-Degree-of-Freedom H$\infty$ Optimum Method (선형다변수계의 2자유도 H$\infty$ 최적방법에 의한 Robust-Servo System의 설계)

  • Hwang, C.S.;Kim, D.W.;Kim, M.S.;Kim, J.T.;Shim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.282-284
    • /
    • 1992
  • In this paper, we deal with design method of two-degree-of-freedom control system which desired property of robustness and tracking can be achieved simultaneously, Controller is designed by means of model matching method and H$\infty$ weighted sensitivity minimization design method. Satisfactory result of design example is obtained by simulation.

  • PDF

A Design of Optimal Satellite-Tracking Control System with Two-Degree-of Freedom for Communication Antenna Equipments (통신안테나 설비의 2자유도 체상 위상 추적 제어 시스템의 설계)

  • Hwang, Chang-Sun;Hwang, Hyun-Joon;Kim, Dong-Wan;Kim, Mun-Soo;Jeong, Ho-Seong
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.3
    • /
    • pp.97-105
    • /
    • 1997
  • The aim of this paper is to introduce a design technique of the Two-Degree-of-Freedom(TDF) satellite-tracking control system which has not only the robust stability for a unstructured uncertainty but also the robust performance for a structured uncertainty. This TDF system which can design the feedforward controller KI and the feedback one K independently is designed by , $\mu$-synthesis. The effectiveness of this TDF system is verified and compared with the One-Degree-of -Freedom(ODF) satellitetracking control system by computer simulation.

  • PDF

A study on the development of $H_{\infty}$ 2-DOF controller for servo motors (서보모터 제어를 위한 $H_{\infty}$ 2-자유도 제어기 개발에 관한 연구)

  • Park, Sung-Chun;Park, Se-Hwa;Kim, Hee-Jun;Choi, B.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3073-3076
    • /
    • 1999
  • In this paper, $H_{\infty}$ two-degree-of freedom(2-DOF) model following control method is applied for the control of a brushless servo motor to achieve high robust performance. The proposed robust control algorithm designed to meet the robust stability and performances present that the robust control method is superior to conventional control methods in controlling the speed and position of a servo motor. The designed controller is implemented as an outer loop controller to a factory designed motor-servopack system. It is illustrated by simulations that the proposed method is effective to control servo systems.

  • PDF

Robust Tracking Control of Robotic Manipulators Using Fuzzy-Sliding Modes (퍼지-슬라이딩모드를 이용한 로봇의 강건추적제어)

  • 김정식;최승복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2088-2100
    • /
    • 1994
  • Considerable attention has been given to controller designs that utilize the variable structure system theory in order to achieve robust tracking performance of robotic manipulators subjected to parameter variations and extraneous disturbances. However, the theory has not had wide spread acceptance in practical control engineering community due mainly to the worry of chattering which is inherently ever-existing in the variable structure system. This paper presents a novel type of fuzzy-sliding mode controller to alleviate the chattering problem. A sliding mode controller for robust robot control is firstly synthesized with an assumption that the imposed system uncertainties satisfy matching conditions so that certain deterministic performances can parameters and control rules are obtained from a relation between predetermined sliding surfaces and representative points in the error state space. A two degree-of-freedom robotic manipulator subjected to a variable payload and a torque disturbance is considered in order to demonstrate superior tracking performance accrued from the proposed methodology.

The Robust Controller Design for Lateral Control of Vehicles (차량의 횡방향 모델에 대한 강인 제어기 설계)

  • 김은주;하성기;정승권;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.496-499
    • /
    • 2002
  • The LQG/LTR controller is a robust and stable control which is systematic method with a view of engineering. And the H$^{\infty}$ scheme is adopted for the design of the controller to reduce the effects of the disturbances. In this paper, LQG/LTR and H$^{\infty}$ Controller Design of Lateral Control System for an Automobile is developed with 3 DOF (degree-of-freedom) model. The performance has been compared for the employed two types of controllers via computed simulations. The results show that the H$^{\infty}$ controller provides more robustness property for the disturbances and lower control input.