• 제목/요약/키워드: Twin-screw

검색결과 231건 처리시간 0.034초

압출용 2축 스크류의 형상설계 및 비토크 특성 (Shape Design and Specific Torque Characteristics of the Extrusion Twin Screw)

  • 최부희;최상훈
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.185-193
    • /
    • 2003
  • The modular self-wiping co-rotating twin screw extruder (SWCOR) has become the most important of twin screw machines. Screw design is one of the most important factors in determining performance of screw extruder. The screw flight and screw channel geometry of SWCOR is determined by the screw diameter, centerline distance, helix angle, and flights number. The maximum allowable throughput rate on a twin screw extruder is determined by a combination of free volume and available specific torque. In this paper we designed geometrical parameters of extruder screw and presented optimal specific torque value in K=1.55, and then developed screw design program for the screw cutting by the use of JAVA API in the twin screw extruder.

동회전 2축 스크류 압출기의 스크류 설계 파라미터에 관한 연구 (A Study on Screw Design Parameters of Co-Rotating Twin Screw Extruder)

  • 최부희;최상훈
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.217-226
    • /
    • 2003
  • Twin screw extruders are the heart of the polymer processing industry. They are used at some stage in nearly all polymer processing operations. This paper is concerned with the basic elements of the extruder design. The proper design of the geometry of the extruder screw is of crucial importance to the proper functioning of the extruder. If the material transport instabilities occur as a result of improper screw geometry, even the most sophisticated computerized control system cannot solve the problem. For this purpose, a characteristic design on the screw flights shape of the closely intermeshing co-rotating twin screw extruder. This paper presents design parameters of double flighted screw and triple flighted screw elements, and characteristics of various screw channel area versus screw diameter ratio, K value, in the barrel of screw extruder.

압출용 스크루의 날개형상에 대한 특성설계 (Characteristics Design on Flights Shape of the Extruder Screw)

  • 최부희;최상훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.292-297
    • /
    • 2001
  • Twin screw extruders are the heart of the polymer processing industry. They are used at some stage in nearly all polymer processing operations. This paper is concerned with the basic elements of the extruder design. The proper design of the geometry of the extruder screw is of crucial importance to the proper functioning of the extruder. If the material transport instabilities occur as a result of improper screw geometry, even the most sophisticated computerized control system cannot solve the problem. For this purpose, a characteristic design on flights shape of the extruder screw. This paper presents cross section designs of a closely intermeshing twin screw extruder with double-flighted screw elements, and channel depth characteristics for a double flighted corotating self-wiping twin screw extruder.

  • PDF

밀폐형 동회전 2축 스크류의 제작에 관한 연구 (A Study on Machining of the Self-Wiping Co-Rotating Twin Screw)

  • 최부희;이상혁;최상훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1426-1429
    • /
    • 2003
  • This paper describes screw tool design and machining method witch is able to design tool profile and 3-dimensional geometry for screws in self-wiping co-rotating twin screw extruder. The geometric features of screws for co-rotating twin screw extruders are developed from kinematic principles. Closely self-wiping screw segments are manufactured in universal milling machine by using designed screw tools. It is shown that experimental results verified the closely intermeshing condition in twin screw.

  • PDF

Static Load Analysis of Twin-screw Kneaders

  • Wei, Jing;Zhang, Guang-Hui;Zhang, Qi;Kim, Jun-Seong;Lyu, Sung-Ki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.59-63
    • /
    • 2008
  • A static load analysis of twin-screw kneaders is required not only for the dynamic analysis, but also because it is the basis of the stiffness and strength calculations that are essential for the design of bearings. In this paper, the static loads of twin-screw kneaders are analyzed, and a mathematical model of the force and torque moments is presented using a numerical integration method based on differential geometry theory. The calculations of the force and torque moments of the twin-screw kneader are given. The results show that the $M_x$ and $M_y$ components of the fluid resistance torque of the rotors change periodically in each rotation cycle, but the $M_z$ component remains constant. The axis forces $F_z$ in the female and male rotors are also constant. The static load calculated by the proposed method tends to be conservative compared to traditional methods. The proposed method not only meets the static load analysis requirements for twin-screw kneaders, but can also be used as a static load analysis method for screw pumps and screw compressors.

Numerical analysis of internal flow and mixing performance in polymer extruder II: twin screw element

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제18권3호
    • /
    • pp.153-160
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow with Carreau-Yasuda viscosity model in co-rotating and counter-rotating twin screw extruder systems. The mixing performances with respect to the screw speed, the screw pitch, and the rotating direction have been investigated. The dynamics of mixing was studied numerically by tracking the motions of particles. The extent of mixing was characterized in terms of the deformation rate, the residence time distribution, and the average strain. The results showed that the high screw speed decreases the residence time but increases the deformation rate. Small screw pitch increases the residence time. It is concluded that the high screw speed increases the dispersive mixing performance, while the small screw pitch increases the distributive mixing performance. Co-rotating screw extruder has the better conveying performance and the distributive mixing performance than counter-rotating screw extruder with the same screw speed and pitch. Co-rotating screw extruder developed faster transport velocity and it is advantageous the flow characteristics to the mixing that transfers polymer melt from one barrel to the other barrel.

이축 스크루 압출기내 유동의 수치 해석과 혼합 성능 분석 (Numerical Study of Internal Flow in Twin Screw Extruder and Its Mixing Performance Analysis)

  • 김낙수;김홍범;이재욱
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.32-41
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow in the melt conveying zone in co-rotating and counter-rotating screw extruder system with the commercial code, STAR-CD, and compared the mixing performance with respect to screw speed and rotating direction. The viscosity of fluid was described by power-law model. The dynamics of mixing was studied numerically by tracking the motion of particles in a twin screw extruder system. The extent of mixing was characterized in terms of the residence time distribution and average strain. The results showed that high screw speed decreases the residence time but increases the shear rate. Therefore higher screw speed increases the strain and has better mixing performance. Counter-rotating screw extruder system and co-rotating screw extruder has the similar shear rate with the same screw speed in spite of different rotating direction. However, the counter-rotating screw has good mixing performance, which is resulted from longer residence time than that of co-rotating screw extruder.

2축 스크류 압출기의 스크류 가공용 공구형상 설계 (Tool Shape Design for the Screw Flights Cutting in Twin Screw Extruder)

  • 최부희;정찬길;최상훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.824-828
    • /
    • 2002
  • Twin screw extruders are the heart of the polymer processing industry. The single most important mechanical element of a screw extruder is the screw. The proper design of the geometry of the excluder screw is of crucial importance to the proper functioning of the extruder. If material transport instabilities occur as a result of improper screw geometry, even the most sophisticated computerized control system cannot solve the problem. For this purpose, Tool shape design for the screw flights cutting in twin screw extruder.

  • PDF

Hydrodynamic optimization of twin-skeg LNG ships by CFD and model testing

  • Kim, Keunjae;Tillig, Fabian;Bathfield, Nicolas;Liljenberg, Hans
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.392-405
    • /
    • 2014
  • SSPA experiences a growing interest in twin skeg ships as one attractive green ship solution. The twin skeg concept is well proven with obvious advantages for the design of ships with full hull forms, restricted draft or highly loaded propellers. SSPA has conducted extensive hull optimizations studies of LNG ships of different size based on an extensive hull data base with over 7,000 models tested, including over 400 twin skeg hull forms. Main hull dimensions and different hull concepts such as twin skeg and single screw were of main interest in the studies. In the present paper, one twin skeg and one single screw 170 K LNG ship were designed for optimally selected main dimension parameters. The twin skeg hull was further optimized and evaluated using SHIPFLOW FRIENDSHIP design package by performing parameter variation in order to modify the shape and positions of the skegs. The finally optimized models were then built and tested in order to confirm the lower power demand of twin skeg designed compaed with the signle screw design. This paper is a full description of one of the design developments of a LNG twin skeg hull, from early dimensional parameter study, through design optimization phase towards the confirmation by model tests.