• Title/Summary/Keyword: Tweet Stream

Search Result 5, Processing Time 0.021 seconds

A Survey on Automatic Twitter Event Summarization

  • Rudrapal, Dwijen;Das, Amitava;Bhattacharya, Baby
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.79-100
    • /
    • 2018
  • Twitter is one of the most popular social platforms for online users to share trendy information and views on any event. Twitter reports an event faster than any other medium and contains enormous information and views regarding an event. Consequently, Twitter topic summarization is one of the most convenient ways to get instant gist of any event. However, the information shared on Twitter is often full of nonstandard abbreviations, acronyms, out of vocabulary (OOV) words and with grammatical mistakes which create challenges to find reliable and useful information related to any event. Undoubtedly, Twitter event summarization is a challenging task where traditional text summarization methods do not work well. In last decade, various research works introduced different approaches for automatic Twitter topic summarization. The main aim of this survey work is to make a broad overview of promising summarization approaches on a Twitter topic. We also focus on automatic evaluation of summarization techniques by surveying recent evaluation methodologies. At the end of the survey, we emphasize on both current and future research challenges in this domain through a level of depth analysis of the most recent summarization approaches.

Fast Visualization Technique and Visual Analytics System for Real-time Analyzing Stream Data (실시간 스트림 데이터 분석을 위한 시각화 가속 기술 및 시각적 분석 시스템)

  • Jeong, Seongmin;Yeon, Hanbyul;Jeong, Daekyo;Yoo, Sangbong;Kim, Seokyeon;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.4
    • /
    • pp.21-30
    • /
    • 2016
  • Risk management system should be able to support a decision making within a short time to analyze stream data in real time. Many analytical systems consist of CPU computation and disk based database. However, it is more problematic when existing system analyzes stream data in real time. Stream data has various production periods from 1ms to 1 hour, 1day. One sensor generates small data but tens of thousands sensors generate huge amount of data. If hundreds of thousands sensors generate 1GB data per second, CPU based system cannot analyze the data in real time. For this reason, it requires fast processing speed and scalability for analyze stream data. In this paper, we present a fast visualization technique that consists of hybrid database and GPU computation. In order to evaluate our technique, we demonstrate a visual analytics system that analyzes pipeline leak using sensor and tweet data.

An Analysis of IT Trends Using Tweet Data (트윗 데이터를 활용한 IT 트렌드 분석)

  • Yi, Jin Baek;Lee, Choong Kwon;Cha, Kyung Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.143-159
    • /
    • 2015
  • Predicting IT trends has been a long and important subject for information systems research. IT trend prediction makes it possible to acknowledge emerging eras of innovation and allocate budgets to prepare against rapidly changing technological trends. Towards the end of each year, various domestic and global organizations predict and announce IT trends for the following year. For example, Gartner Predicts 10 top IT trend during the next year, and these predictions affect IT and industry leaders and organization's basic assumptions about technology and the future of IT, but the accuracy of these reports are difficult to verify. Social media data can be useful tool to verify the accuracy. As social media services have gained in popularity, it is used in a variety of ways, from posting about personal daily life to keeping up to date with news and trends. In the recent years, rates of social media activity in Korea have reached unprecedented levels. Hundreds of millions of users now participate in online social networks and communicate with colleague and friends their opinions and thoughts. In particular, Twitter is currently the major micro blog service, it has an important function named 'tweets' which is to report their current thoughts and actions, comments on news and engage in discussions. For an analysis on IT trends, we chose Tweet data because not only it produces massive unstructured textual data in real time but also it serves as an influential channel for opinion leading on technology. Previous studies found that the tweet data provides useful information and detects the trend of society effectively, these studies also identifies that Twitter can track the issue faster than the other media, newspapers. Therefore, this study investigates how frequently the predicted IT trends for the following year announced by public organizations are mentioned on social network services like Twitter. IT trend predictions for 2013, announced near the end of 2012 from two domestic organizations, the National IT Industry Promotion Agency (NIPA) and the National Information Society Agency (NIA), were used as a basis for this research. The present study analyzes the Twitter data generated from Seoul (Korea) compared with the predictions of the two organizations to analyze the differences. Thus, Twitter data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. To overcome these challenges, we used SAS IRS (Information Retrieval Studio) developed by SAS to capture the trend in real-time processing big stream datasets of Twitter. The system offers a framework for crawling, normalizing, analyzing, indexing and searching tweet data. As a result, we have crawled the entire Twitter sphere in Seoul area and obtained 21,589 tweets in 2013 to review how frequently the IT trend topics announced by the two organizations were mentioned by the people in Seoul. The results shows that most IT trend predicted by NIPA and NIA were all frequently mentioned in Twitter except some topics such as 'new types of security threat', 'green IT', 'next generation semiconductor' since these topics non generalized compound words so they can be mentioned in Twitter with other words. To answer whether the IT trend tweets from Korea is related to the following year's IT trends in real world, we compared Twitter's trending topics with those in Nara Market, Korea's online e-Procurement system which is a nationwide web-based procurement system, dealing with whole procurement process of all public organizations in Korea. The correlation analysis show that Tweet frequencies on IT trending topics predicted by NIPA and NIA are significantly correlated with frequencies on IT topics mentioned in project announcements by Nara market in 2012 and 2013. The main contribution of our research can be found in the following aspects: i) the IT topic predictions announced by NIPA and NIA can provide an effective guideline to IT professionals and researchers in Korea who are looking for verified IT topic trends in the following topic, ii) researchers can use Twitter to get some useful ideas to detect and predict dynamic trends of technological and social issues.

Entity Linking For Tweets Using User Model and Real-time News Stream (유저 모델과 실시간 뉴스 스트림을 사용한 트윗 개체 링킹)

  • Jeong, Soyoon;Park, Youngmin;Kang, Sangwoo;Seo, Jungyun
    • Korean Journal of Cognitive Science
    • /
    • v.26 no.4
    • /
    • pp.435-452
    • /
    • 2015
  • Recent researches on Entity Linking(EL) have attempted to disambiguate entities by using a knowledge base to handle the semantic relatedness and up-to-date information. However, EL for tweets using a knowledge base is still unsatisfactory, mainly because the tweet data are mostly composed of short and noisy contexts and real-time issues. The EL system the present work builds up links ambiguous entities to the corresponding entries in a given knowledge base via exploring the news articles and the user history. Using news articles, the system can overcome the problem of Wikipedia coverage (i.e., not handling real-time issues). In addition, given that users usually post tweets related to their particular interests, the current system referring to the user history robustly and effectively works with a small size of tweet data. In this paper, we propose an approach to building an EL system that links ambiguous entities to the corresponding entries in a given knowledge base through the news articles and the user history. We created a dataset of Korean tweets including ambiguous entities randomly selected from the extracted tweets over a seven-day period and evaluated the system using this dataset. We use accuracy index(number of correct answer given by system/number of data set) The experimental results show that our system achieves a accuracy of 67.7% and outperforms the EL methods that exclusively use a knowledge base.

A Study on Tourism Resource Strategy of Film Location using Social Bigdata based on SNS Trend Analysis of Jeonju Area (소셜 빅데이터를 활용한 영화촬영지 관광자원화 방안 -전주 지역의 관광체험 SNS 동향 분석을 토대로-)

  • Park, Ji-Yeong;Kim, Geon;Kim, Chan-Young;Oh, Hyo-Jung
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.11
    • /
    • pp.477-487
    • /
    • 2016
  • In 1995, the filming location of the drama had been famous, and as a result it brings the effect of increasing tourists of that areas. After that, many local governments try to host the filming on their regions to be potential tourist attractions. With the same stream, Jeonju also has attempted to host International Film Festival and to set up Jeonju Film Commission and Jeonju Cinema Complex. However, although the city already has rich infrastructure facilities to make films, the city hardly tries to use the filming locations as tourist attractions. This study suggests four ways of using filming locations as tourist attractions to activate Jeonju economy and improve Jeonju's cultural image. We firstly collect social bigdata related with tourists of filming locations and tourist attractions in Jeonju from Twitter, which is the most representative SNS, and then perform frequency and trend analysis. We also investigate major factors of visits to tourist's attractions based on content analysis of tweet mentions.