• 제목/요약/키워드: Tweet Stream

검색결과 5건 처리시간 0.018초

A Survey on Automatic Twitter Event Summarization

  • Rudrapal, Dwijen;Das, Amitava;Bhattacharya, Baby
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.79-100
    • /
    • 2018
  • Twitter is one of the most popular social platforms for online users to share trendy information and views on any event. Twitter reports an event faster than any other medium and contains enormous information and views regarding an event. Consequently, Twitter topic summarization is one of the most convenient ways to get instant gist of any event. However, the information shared on Twitter is often full of nonstandard abbreviations, acronyms, out of vocabulary (OOV) words and with grammatical mistakes which create challenges to find reliable and useful information related to any event. Undoubtedly, Twitter event summarization is a challenging task where traditional text summarization methods do not work well. In last decade, various research works introduced different approaches for automatic Twitter topic summarization. The main aim of this survey work is to make a broad overview of promising summarization approaches on a Twitter topic. We also focus on automatic evaluation of summarization techniques by surveying recent evaluation methodologies. At the end of the survey, we emphasize on both current and future research challenges in this domain through a level of depth analysis of the most recent summarization approaches.

실시간 스트림 데이터 분석을 위한 시각화 가속 기술 및 시각적 분석 시스템 (Fast Visualization Technique and Visual Analytics System for Real-time Analyzing Stream Data)

  • 정성민;연한별;정대교;유상봉;김석연;장윤
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제22권4호
    • /
    • pp.21-30
    • /
    • 2016
  • 위험관리 시스템은 단 시간에 의사결정하기 위해 스트림 데이터를 실시간으로 분석 할 수 있어야 한다. 많은 데이터 분석 시스템은 CPU와 디스크 데이터베이스로 구성되어 있다. 하지만, cpu 기반 시스템은 스트림 데이터를 실시간으로 분석하는데 어려움이 있다. 스트림 데이터는 1ms부터 1시간, 1일까지 생성주기가 다양하다. 한 개의 센서가 생성하는 데이터는 작다. 하지만 수 만개의 센서가 생성하는 데이터는 매우 크다. 예를 들어 10만개 센서가 1초에 1GB 데이터를 생성한다면, CPU 기반 시스템은 이를 분석 할 수 없다. 이러한 이유로 실시간 스트림 데이터 분석 시스템은 빠른 처리 속도와 확장성이 필요하다. 본 논문에서는 GPU와 하이브리드 데이터베이스를 이용한 시각화 가속 기술을 제안한다. 제안한 기술을 평가하기 위해 우리는 지하 파이프라인에 설치된 센서와 트윗 데이터를 활용하여 실시간 릭 탐지 시각적 분석 시스템에 적용했다.

트윗 데이터를 활용한 IT 트렌드 분석 (An Analysis of IT Trends Using Tweet Data)

  • 이진백;이충권;차경진
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.143-159
    • /
    • 2015
  • 불확실한 환경변화에 대처하고 장기적 전략수립을 위해 기업에게 있어서 IT 트렌드에 대한 예측은 오랫동안 중요한 주제였다. IT 트렌드에 대한 예측을 기반으로 새로운 시대에 대한 인식을 하고 예산을 배정하여 빠르게 변화하는 기술의 추세에 대비할 수 있기 때문이다. 해마다 유수의 컨설팅업체들과 조사기관에서 차년도 IT 트렌드에 대해서 발표되고는 있지만, 이러한 예측이 실제로 차년도 비즈니스 현실세계에서 나타났는지에 대한 연구는 거의 없었다. 본 연구는 현존하는 빅데이터 기술을 활용하여 서울지역을 중심으로 지난 8개월동안(2013년 5월1일부터 2013년12월31까지) 정보통신산업진흥원과 한국정보화진흥원에서 2012년 말에 발표한 IT 트렌드 토픽이 언급된 21,589개의 트윗 데이터를 수집하여 분석하였다. 또한 2013년에 나라장터에 올라온 프로젝트들이 IT트렌드 토픽과 관련이 있는지 상관관계분석을 실시하였다. 연구결과, 빅데이터, 클라우드, HTML5, 스마트홈, 테블릿PC, UI/UX와 같은 IT토픽은 시간이 지날수록 매우 빈번하게 언급되어졌으며, 이 같은 토픽들은 2013년 나라장터 공고 프로젝트 데이터와도 매우 유의한 상관관계를 가지고 있는 것을 확인할 수 있었다. 이는 전년도(2012년)에 예측한 트렌드들이 차년도(2013년)에 실제로 트위터와 한국정부의 공공조달사업에 반영되어 나타나고 있는 것을 의미한다. 본 연구는 최신 빅데이터툴을 사용하여, 유수기관의 IT트렌드 예측이 실제로 트위터와 같은 소셜미디에서 생성되는 트윗데이터에서 얼마나 언급되어 나타나는지 추적했다는 점에서 중요한 의의가 있고, 이를 통해 트위터가 사회적 트랜드의 변화를 효율적으로 추적하기에 유용한 도구임을 확인하고자 할 수 있었다.

유저 모델과 실시간 뉴스 스트림을 사용한 트윗 개체 링킹 (Entity Linking For Tweets Using User Model and Real-time News Stream)

  • 정소윤;박영민;강상우;서정연
    • 인지과학
    • /
    • 제26권4호
    • /
    • pp.435-452
    • /
    • 2015
  • 최근 개체 링킹에 대한 연구들은 지식 베이스를 외부 자원으로 사용하여 실세계의 지식과 의미적인 관련도를 통해 중의성을 해소하는데 중점을 두고 있다. 지식 베이스를 사용한 개체 링킹은 신문기사나 블로그 포스트 등에서는 좋은 성능을 보이지만, 마이크로블로그에서는 짧은 텍스트 길이와 지식 베이스에 존재하지 않는 주제를 다루는 특성 때문에 비교적 낮은 성능을 보인다. 본 논문에서는 140자가 되지 않는 짧은 텍스트 내에서 실시간으로 빠르게 정보를 공유하는 특성을 가지는 마이크로블로그에서 나타나는 개체명의 중의성을 해소하는 방법을 제안한다. 제안하는 방법은 지식 베이스만 사용하는 개체 링킹의 한계를 극복하기 위해 마이크로블로그 사용자 기록과 뉴스 기사를 이용하고, 지식 베이스에 존재하는 특정 엔트리로 개체 링킹을 수행한다. 본 논문에서는 개체명을 포함하는 한국어 트윗을 추출하여 데이터를 구축하였다. 성능 평가는 정확도 지표(시스템이 정답으로 판정한 데이터 개수/전체 데이터 개수)를 사용하였으며, 제안하는 시스템은 구축한 데이터에서 기존 지식 베이스만 사용한 개체 링킹 시스템보다 높은 67.7%의 정확도를 나타내었다.

소셜 빅데이터를 활용한 영화촬영지 관광자원화 방안 -전주 지역의 관광체험 SNS 동향 분석을 토대로- (A Study on Tourism Resource Strategy of Film Location using Social Bigdata based on SNS Trend Analysis of Jeonju Area)

  • 박지영;김건;김찬영;오효정
    • 한국콘텐츠학회논문지
    • /
    • 제16권11호
    • /
    • pp.477-487
    • /
    • 2016
  • 1995년 드라마 <모래시계> 촬영지가 유명 관광지로 각광받고 수많은 관광객들을 불러 모은 이후, 각 지자체는 영화 드라마 촬영을 유치하고자 다양한 노력을 기울이고 있다. 지자체 중에서도 특히 전주시는 국제영화제 개최, 전주영상위원회 및 전주영화종합촬영소 설립 등 촬영을 유치하고자 적극적으로 노력하고 있다. 그러나 이러한 풍부한 기반 환경을 갖췄음에도 불구하고, 촬영 이후에 이를 장기적으로 활용하고자 하는 노력은 타 도시에 비해 미흡한 실정이다. 본 연구에서는 이와 같은 한계를 보완하기 위하여 대표적인 SNS(Social Network Service)인 트위터(twitter)를 대상으로 특정 구문을 포함한 트윗을 수집, 그 추이를 분석하였다. 이러한 트윗 멘션의 내용 분석을 통해, 본 연구는 전주 지역의 촬영지와 관광지에 실제로 방문하는 관광객의 주요 방문 요인을 알아보고, 나아가 촬영지의 관광자원화를 위한 방안을 제안하였다.