본 연구에서는 댓글(음식점/영화/모바일제품) 및 도메인이 없는 트위터 데이터에 대한 감성 분석을 수행하고, 각 문장에 대한 object(or aspect)와 opinion word를 추출하는 시스템을 개발하고 평가한다. 감성 분석을 수행하기 위해 Structural SVM 알고리즘과 Latent Structural SVM 알고리즘을 사용하여 비교 평가하였으며, 실험 결과 Latent Structural SVM이 더 좋은 성능을 보였으며, 구문 분석을 통해 분석된 VP, NP정보를 활용하여 object(aspect)와 opinion word를 추출할 수 있음을 보였다. 또한, 실제 서비스에 활용하기 위해 감성 탐지기를 개발하고 평가하였다.
Zia, Muhammad Azam;Zhang, Zhongbao;Chen, Liutong;Ahmad, Haseeb;Su, Sen
Journal of Information Processing Systems
/
제13권4호
/
pp.987-999
/
2017
Extraction of influential people from their respective domains has attained the attention of scholastic community during current epoch. This study introduces an innovative interaction strength metric for retrieval of the most influential users in the online social network. The interactive strength is measured by three factors, namely re-tweet strength, commencing intensity and mentioning density. In this article, we design a novel algorithm called IPRank that considers the communications from perspectives of followers and followees in order to mine and rank the most influential people based on proposed interaction strength metric. We conducted extensive experiments to evaluate the strength and rank of each user in the micro-blog network. The comparative analysis validates that IPRank discovered high ranked people in terms of interaction strength. While the prior algorithm placed some low influenced people at high rank. The proposed model uncovers influential people due to inclusion of a novel interaction strength metric that improves results significantly in contrast with prior algorithm.
최근 SNS 사용자가 급증하면서 매우 다양하고 방대한 양의 글이 여러 종류의 SNS를 통해 생성되고 있다. 그중 트위터는 정보의 전달 및 확산에 상당히 유용한 도구로 사용되고 있다. 이러한 트위터의 사용자 트윗은 뉴스, 음악, 사진, 여행 등 다양한 형태로 등장한다. 또한 트위터는 해시태그라는 사용자 정의 태그를 사용하는데 이는 트윗의 키워드 및 핵심을 쉽게 표현할 수 있도록 해주는 효과적인 수단이다. 최근 상당히 많은 양의 트윗의 생성에도 불구하고 이를 다양한 카테고리별로 분류할 수 있는 연구가 많이 진행되지 않았다. 따라서 본 논문에서는 해시태그를 이용해 트윗의 핵심을 파악하고 수많은 트윗을 다양한 토픽별로 분류할 수 있는 기법을 제안한다. 우선 다양한 카테고리의 인기 해시태그가 포함된 트윗을 수집하고 수집한 트윗에서 해시태그별 키워드를 추출한다. 그리고 코사인 유사도를 통해 해시태그별 내용 유사도를 파악하여 각 카테고리 내의 해시태그가 얼마나 유사한 내용을 지니고 있는지 파악한다. 마지막으로 사용자 트윗이 입력되면 모든 카테고리와 유사도를 비교하여 가장 유사도가 높은 카테고리를 찾아 추천해준다. 제안된 기법을 바탕으로 프로토타입을 구현하고 실험을 통해 성능을 평가한다.
Bilal, Hafiz Syed Muhammad;Razzaq, Muhammad Asif;Lee, Sungyoung
한국정보처리학회:학술대회논문집
/
한국정보처리학회 2014년도 추계학술발표대회
/
pp.928-931
/
2014
The detection of human behavior from social media revolutionized health, business, criminal and political prediction. Significance of it, in incentive transformation of public opinion had already proven for developed countries in improving democratic process of elections. In $3^{rd}$ World countries, voters poll votes for personal interests being unaware of party manifesto or national interest. These issues can be addressed by social media, resulting as ongoing process of improvement for presently adopted electoral procedures. On the optimistic side, people of such countries applied social media to garner support and campaign for political parties in General Elections. Political leaders, parties, and people empowered themselves with social media, in disseminating party's agenda and advocacy of party's ideology on social media without much campaigning cost. To study effectiveness of social media inferred from individual's political behavior, large scale analysis, sentiment detection & tweet classification was done in order to classify, predict and forecast election results. The experimental results depicts that social media content can be used as an effective indicator for capturing political behaviors of different parties positive, negative and neutral behavior of the party followers as well as party campaign impact can be predicted from the analysis.
구제역으로 인하여 국내 축산업계 및 관련 산업분야는 매년 막대한 피해를 입고 있다. 구제역과 관련한 다양한 학술적 연구들이 현재 진행되고는 있으나, 구제역의 발병에 따른 사회적 파급효과에 관한 공학적 분석 연구는 매우 제한적이다. 본 연구에서는 구제역에 관한 일반 시민들의 감성적 반응을 텍스트 마이닝 방법론을 사용하여 분석하는 체계적인 방법론을 제안한다. 제안하는 시스템은 먼저, 트위터에 게시된 트윗 중 구제역과 관련된 데이터를 수집한 후, 감성사전을 기반으로 극성탐지 과정을 거친다. 둘째, 토픽 모델링의 대표적인 기법 중 하나인 LDA를 활용하여 트윗으로 부터 키워드들을 추출하고, 추출된 키워드들로부터 극성별 동시출현 키워드 네트워크를 구성한다. 셋째, 키워드 네트워크을 통해 각 구간별 구제역의 사회적 파급효과를 분석한다. 사례 분석으로써, 2010년 7월부터 2011년 12월까지 국내에서 발생한 구제역에 관한 일반 시민들의 감성적 변화를 분석하였다.
본 논문은 사회의 최근 동향에 대한 여론의 반응을 관찰하기 위한 방법을 나타낸다. 최근 동향을 나타내는 키워드를 신문기사로부터 추출하고, 추출된 키워드를 이용하여 수집된 트윗의 감성 분석을 통해 최근 동향에 대한 여론을 분석한다. 수집된 신문기사를 k-means알고리즘을 이용하여 군집화하고, 군집내의 단어의 출현 빈도를 이용하여 토픽 키워드를 선정하였다. 각 토픽에 대하여 수집된 트윗은 그 토픽 대한 트윗이라는 가정하에 기계학습 방법을 이용하여 긍/부정을 판별하여 감성을 판단하게 하였다. 그리고 이와 같은 가정에 대한 타당성을 검증해 보았다.
최근 스마트폰의 보급으로 소셜 네트워크 서비스를 이용하는 사용자들이 급증하였다. 그 중 트위터는 정보의 빠른 전파력과 확산성으로 인해 현실에서 발생한 이벤트를 탐지하는 도구로 활용하는 것이 가능하다. 따라서 트위터 사용자 개개인을 하나의 센서로 가정하고 그들이 작성한 트윗 텍스트를 분석한다면 이벤트 탐지의 도구로써 활용할 수 있다. 이와 관련된 연구들은 이벤트 발생 위치를 추적하기 위해 GPS좌표를 이용하지만 트위터 사용자들이 위치정보 공개에 회의적인 점을 감안하면 명확한 한계점으로 제시될 수 있다. 이에 본 논문에서는 트위터에서 제공하는 위치정보를 이용하지 않고, 트윗 텍스트에서 위치정보를 추적하는 방법을 제시하였다. 트윗 텍스트에서 키워드간의 관계를 고려하여 이벤트의 사실여부를 결정하였으며, 실험을 통해 기존 매체들보다 빠른 탐지를 보임으로써 제안된 시스템의 필요성을 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권12호
/
pp.3868-3888
/
2022
A widely used social networking service like Twitter has the ability to disseminate information to large groups of people even during a pandemic. At the same time, it is a convenient medium to share irrelevant and unverified information online and poses a potential threat to society. In this research, conventional machine learning algorithms are analyzed to classify the data as either non-rumor data or rumor data. Machine learning techniques have limited tuning capability and make decisions based on their learning. To tackle this problem the authors propose a deep learning-based Rumor Detection Neural Network model to predict the rumor tweet in real-world events. This model comprises three layers, AttCNN layer is used to extract local and position invariant features from the data, AttBi-LSTM layer to extract important semantic or contextual information and HPOOL to combine the down sampling patches of the input feature maps from the average and maximum pooling layers. A dataset from Kaggle and ground dataset #gaja are used to train the proposed Rumor Detection Neural Network to determine the veracity of the rumor. The experimental results of the RDNN Classifier demonstrate an accuracy of 93.24% and 95.41% in identifying rumor tweets in real-time events.
International Journal of Computer Science & Network Security
/
제24권7호
/
pp.195-201
/
2024
With the Covid-19(Corona Virus) spread all around the world, people are using this propaganda and the desperate need of the citizens to know the news about this mysterious virus by spreading fake news. Some Countries arrested people who spread fake news about this, and others made them pay a fine. And since Social Media has become a significant source of news, .there is a profound need to detect these fake news. The main aim of this research is to develop a web-based model using a combination of machine learning algorithms to detect fake news. The proposed model includes an advanced framework to identify tweets with fake news using Context Analysis; We assumed that Natural Language Processing(NLP) wouldn't be enough alone to make context analysis as Tweets are usually short and do not follow even the most straightforward syntactic rules, so we used Tweets Features as several retweets, several likes and tweet-length we also added statistical credibility analysis for Twitter users. The proposed algorithms are tested on four different benchmark datasets. And Finally, to get the best accuracy, we combined two of the best algorithms used SVM ( which is widely accepted as baseline classifier, especially with binary classification problems ) and Naive Base.
본 연구는 CEO의 이미지가 조직의 이미지를 형성하거나 조직의 이미지를 개선하는데 중요한 변수로 작용한다는 이론을 토대로 SNS의 팔로워 수가 많은 CEO의 메시지와 이미지는 개인적 선호를 넘어 기업의 이미지에까지 영향을 미칠 수 있다는 가정에서 출발하였다. 이에 따라 소셜 네트워크 서비스의 하나인 트위터의 팔로워 수가 가장많은 CEO인 이찬진과 표현명의 트위터 메시지를 분석하여 CEO의 이미지를 조사하는 한편 각 CEO들의 팔로워들이 평가하는 CEO에 대한 이미지를 살펴보았다. 이미지 분석의 척도로는 CEO의 성품 항목에 청렴성, 솔직함, 정직성, 신뢰성, 따뜻함을 포함하였으며, CEO 능력 항목은 경청능력, 조직융합성, 정보제공, CEO 외적 조건 항목은 사회참여와 유머로 구성하였다. 연구 결과 이찬진의 경우 정보제공, 경청, 겸손, 솔직함, 비전 순으로 이미지가 표현되었으며, 표현명의 경우 정보제공, 경청, 신뢰성, 유머 순으로 나타났다. 팔로워들이 본 CEO 이미지에 있어서는 이찬진의 경우 CEO 능력이 가장 두드러졌고, 표현명은 CEO 외적조건의 점수가 높게 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.