• Title/Summary/Keyword: Turns Ratio

Search Result 225, Processing Time 0.019 seconds

Design and Simulation Technologies of Flat Transformer with High Power Current (대전류 출력형 Flat Transformer 설계 및 해석 기술)

  • Han, Se-Won;Cho, Han-Goo;Woo, Bung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.15-17
    • /
    • 2002
  • Leakage inductance and temperature rise are two of the more impotent problems facing the magnetic core technology of today's high frequency transformers. Excessive leakage inductance increases the stress on the switching transistors and limits the duty-cycle, and excessive temperature rise can lead the design limitation of high frequency transformer with high current. The flat transformer technology provides a very good solution to the problems of leakage inductance and thermal management for high frequency power. The critical magnetic components and windings are optimized and packaged within a completely assembled module. The turns ratio in a flat transformer is determined as the product of the number of elements or modules times the number of primary turns. The leakage inductance increase proportionately to the number of elements, but since it is reduced as the square of the turns, the net reduction can be very significant. The flat transformer modules use cores which have no gap. This eliminates fringing fluxes and stray flux outside of the core. The secondary windings are formed of flat metal and are bonded to the inside surface of the core. The secondary winding thus surrounds the primary winding, so nearly all of the flux is captured.

  • PDF

Study on designing of Flat Transformer and operating characteristics of Converter (Flat Transformer 코아의 설계와 컨버터 동작 특성)

  • Han, Se-Won;Cho, Han-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.587-590
    • /
    • 2003
  • The first attention in designing a transformer for low temperature rise should be to reduce losses. Leakage inductance and temperature rise are two of the more impotent problems facing the magnetic core technology of today's high frequency transformers. Excessive leakage inductance increases the stress on the switching transistors and limits the duty-cycle, and excessive temperature rise can lead the design limitation of high frequency transformer with high current. The flat transformer technology provides a very good solution to the problems of leakage inductance and thermal management for high frequency power. The critical magnetic components and windings are optimized and packaged within a completely assembled module. The turns ratio in a flat transformer is determined as the product of the number of elements or modules times the number of primary turns. The leakage inductance increase proportionately to the number of elements, but since it is reduced as the square of the turns, the net reduction can be very significant. The flat transformer modules use cores which have no gap. This eliminates fringing fluxes and stray flux outside of the core. The secondary windings are formed of flat metal and are bonded to the inside surface of the core. The secondary winding thus surrounds the primary winding, so nearly all of the flux is captured.

  • PDF

A Study on the Analysis of Internal Power Loss Including Leakage Inductance of Power Transformer for DAB Converter (DAB 컨버터용 전력 변압기의 누설 인덕턴스를 포함한 내부 전력 손실 분석에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young;Gil, Yong Man
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.95-100
    • /
    • 2022
  • In this paper, a power loss analysis technique of a high-frequency transformer of a bidirectional DAB (Dual Active Bridge) converter is reported. To miniaturize the transformer of the dual active bridge converter, a resonant inductor was designed with an air gap included low-coupled rate state core to combine leakage inductor with the resonant inductor which is required for soft-switching. In this paper, leakage inductance and magnetizing inductance, core material, type of winding and winding method are included in the dual active bridge transformer loss analysis process to enable optimal design at the initial design stage. Transformer loss analysis for dual active bridge with a switching frequency of 200 kHz and maximum output of 5 kW was executed, and elements necessary for design based on the number of turns on the primary side were graphed while maintaining the transformer turns ratio and window area. In particular, it was possible to determine the optimal number of turns and thickness of the transformer, and ultimately, the total loss of the transformer could be estimated.

Optimal Design of 6.6kV-200A DC Reactor Type High-Tc Superconducting: Fault Current Limter (6.6kV-200A급 DC 리액터형 고온초전도한류기의 최적설계)

  • 서호준;이승제;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.99-104
    • /
    • 2002
  • This study deals with the optimal design of a DC reactor type high-Tc superconducting fault current limiter(SFCL). The condition in which the cost function is minimized under given constraints is one of the things to be first considered in developing SFCLS. This condition is a group of the values corresponding to the variables the cost function depends on. In this paper, the length of tape was taken as a dependent variable, the inductance of DC reactor and the turns ratio of magnetic core reactors as independent variables. For the SFCL available at the level of 6.6kV-200A, we examined 4 cases; at the fault times of 80msec, 50msec, 30msec and 10msec. Since thyristors would be utilized instead of diodes, we chose the result at 10msec as the basic data. Considering safety factor 30%, our optimal design was decided to be the inductance 570mH, the critical current over 620A, the turns ratio 0.89 and the fault time within 20msec.

Fault Current Limiting Characteristics of Resistive Type SFCL using Transformer (변압기를 이용한 저항형 고온초전도 전류제한기의 한류 특성)

  • 임성훈;최효상;고석철;이종화;강형곤;한병성
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.288-290
    • /
    • 2003
  • The transformer is expected to be an essential component of resistive type superconducting fault current limiter (SFCL) for both the increase of voltage ratings in SFCL and the simultaneous quench due to different critical current between HTSC elements. However, for the design to prevent the saturation of iron core and the effective fault current limitation, the analysis for operation of SFCL with consideration for the magnetization characteristics are required. In this paper, the fault current limiting characteristics related with the magnetization ones were investigated through the variation of the ratio of the number of turns in the 1st and the 2nd windings. The proper design condition with variation of the number of turns to make the effective fault current limiting operation could be determined.

  • PDF

Recovery Characteristics of SFCL According to the Turn's Variation (턴수 변화에 따른 초전도 전류제한기의 회복특성 분석)

  • Han, Tae-Hee;Cho, Yong-Sun;Park, Hyoung-Min;Nam, Guong-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Lim, Sung-Hun;Chung, Dong-Chul;Hwang, Jong-Sun;Choi, Myoung-Ho;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.184-185
    • /
    • 2006
  • The flux-lock type superconducting fault current limiter (SFCL) has the attractive characteristics that can adjust the current limiting level by the turns ratio between two coils. Since the recovery characteristics of a superconducting element m the flux-lock type SFCL were dependent on the turns ratio between two coils, the analysis for the recovery characteristics of this type SFCL together with the current limiting characteristic is necessary to apply it to power system. When the applied voltage and load impedance were same, the recovery time of the superconducting element was 0.32sec in case that the turn's ratio between the primary and secondary windings was 63:21. In the meantime, when the turn's ratio of secondary winding increased to 3 times, the recovery time became longer to 0.58sec.

  • PDF

Auto-Diagnosis for Stator Winding Faults Using Distortion Ratio of Park's Vector Pattern (Park's 벡터 패턴의 왜곡률을 이용한 고정자 권선 고장 자동진단)

  • Song, Myung-Hyun;Park, Kyu-Nam;Han, Dong-Gi;Yang, Chul-Oh
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.160-163
    • /
    • 2008
  • In this paper, an auto-diagnosis method of the stator winding fault for small induction motor is suggested. 3-phase stator currents are sampled, filtered, and transformed with Park's vector transformation. After then Park's vector patterns are obtained. To detect the stator winding fault automatically, a distortion ratio is newly defined and compared with the one of healthy motor, and the threshold levels of distortion ratio are suggested. The 2-turn, 4-turn, 8-turn winding fault are tested with no load, 25%, 50%, 75%, and 100% rated load. The distortion ratio of the Park's vector patterns are increased as the increase of the faulted turns, but are same as the increase of the load.

Characteristics of Flow-induced Vibration for CE Type Steam Generator Tube with Various Column and Row Number (CE형 증기발생기 전열관의 행열 변화에 따른 유체유발진동 특성)

  • Ryu, Ki-Wahn;Cho, Bong-Ho;Park, Chi-Yong;Park, Su-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.927-932
    • /
    • 2002
  • The stability ratio and vibrational amplitude of each tube inside a steam generator have different values. We estimate the characteristics of flow-induced vibration for CE type steam generator with various column and row number of the tube. To obtain the thermal-hydraulic data and stability ratio we use the ATHOS3-MODI and PIAT-FEI/TE code respectively. It turns out that the steam generator has a bounded central zone with the distributed values of the stability ratio and the vibrational amplitude, and those values across the zone boundary become decreased.

  • PDF

Characteristics of Flow-induced Vibration for CE Type Steam Generator Tube with Various Column and Row Number (CE형 증기발생기 튜브의 행열 변화에 따른 유체유발진동 특성)

  • Ryu, Ki-Wahn;Cho, Bong-Ho;Park, Chi-Yong;Park, Su-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.390.2-390
    • /
    • 2002
  • The stability ratio and vibrational amplitude of each tube inside a steam generator have different values. We estimate the characteristics of flow-induced vibration for CE type steam generator with various column and row number of the tube. To obtain the thermal-hydraulic data and stability ratio we use the ATHOS3 and PIAT-FEI/TE code respectively. It turns out that the steam generator has a bounded central zone which the distributed values of the stability ratio and the vibrational amplitude, and those values across the zone boundary become decreased.

  • PDF

A Three-Winding Transformer Protective Relaying Algorithm Based on the Induced Voltages (유기 전압비를 이용한 3권선 변압기 보호계전 알고리즘)

  • 강용철;이병은
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.173-178
    • /
    • 2003
  • This paper proposes a three-winding transformer protective relaying algorithm based on the ratio of the induced voltages (RIV). The RIV of the two windings is the same as the turn ratio for all operating conditions except an internal fault. For a single phase and a three-phase transformer containing the wye-connected windings, the induced voltages of the windings are estimated. For a three-phase transformer containing the delta-connected windings, the induced voltage differences are estimated using the line currents, because the winding currents are practically unavailable. The algorithm can identify the faulted phase and winding if a fault occurs on one phase of a winding. The test results clearly show that the algorithm successfully discriminates internal winding faults from magnetic inrush. The algorithm not only does not require hysteresis data but also can reduce the operating time of a relay.