• Title/Summary/Keyword: Turn Range

Search Result 368, Processing Time 0.026 seconds

Design and Control of Adjustable Turn-ratio LLC Converter for High-efficiency Operation of Wired/Wireless Integrated Charging System for Electric Vehicles (전기자동차용 유·무선 통합 충전 시스템의 고효율 동작을 위한 권선비 가변형 LLC 컨버터 설계 및 제어 방안)

  • Jo, Hyeon-Woo;Sim, Dong-Hyeon;Lee, Ju-A;Son, Won-Jin;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.237-246
    • /
    • 2022
  • This paper proposes a method to adjust the turn ratio of a transformer for the high-efficiency operation of an LLC converter with a wide input range in a wired/wireless integrated charging system for electric vehicles. The characteristics of the inductive power transfer converter in the integrated charging system are analyzed to design the LLC converter, and the DC-link voltage range is derived. The aspect of voltage gain following each parameter of the LLC converter is analyzed, and the resonant network and transformer are designed. Based on the designed parameters, the feasibility of the design and control method is verified by implementing the operation of the LLC converter according to the DC-link and battery voltages.

A Wide Voltage-Gain Range Asymmetric H-Bridge Bidirectional DC-DC Converter with a Common Ground for Energy Storage Systems

  • Zhang, Yun;Gao, Yongping;Li, Jing;Sumner, Mark
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.343-355
    • /
    • 2018
  • A wide-voltage-conversion range bidirectional DC-DC converter is proposed in this paper. The topology is comprised of one typical LC energy storage component and a special common grounded asymmetric H-bridge with four active power switches/anti-parallel diodes. The narrow output PWM voltage is generated from the voltage difference between two normal (wider) output PWM voltages from the asymmetric H-bridge with duty cycles close to 0.5. The equivalent switching frequency of the output PWM voltage is double the actual switching frequency, and a wide step-down/step-up ratio range is achieved. A 300W prototype has been constructed to validate the feasibility and effectiveness of the proposed bidirectional converter between the variable low voltage side (24V~48V) and the constant high voltage side (200V). The slave active power switches allow ZVS turn-on and turn-off without requiring any extra hardware. The maximum conversion efficiency is 94.7% in the step-down mode and 93.5% in the step-up mode. Therefore, the proposed bidirectional topology with a common ground is suitable for energy storage systems such as renewable power generation systems and electric vehicles with a hybrid energy source.

A study on the characteristics of heat transfer and pressure drop in plate type evaporator with U-turn for automotive air conditioner (유턴 흐름을 갖는 차량공조용 플레이트형 증발기의 전열특성에 관한 연구)

  • 강정길;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.472-483
    • /
    • 1999
  • The evaporation heat transfer and pressure drop characteristics for HFC-l34a in flat plate type heat exchangers with enhanced beads were experimentally investigated. Three plate type evaporators with different geometric condition of U-turn area were tested. Mass fluxes were tested over the range of 83kg/$m^2$s to 166kg/$m^2$s, and heat fluxes were varied from 4㎾/$m^2$ to 12㎾/$m^2$. Evaporation temperature was 5$^{\circ}C$ with inlet qualities of 0.1 to 1.0. There was no notable difference in the heat transfer coefficient by geometric variation of U-turn area, but the third plate with cross-ribbed channel at U-turn area was better than others in the evaluation using volume goodness factor comparison. Also, the mixtures of HFC-l34a and PAG oil was tested to determine oil effects on heat transfer and pressure drop. As oil concentration was increased, heat transfer coefficient was increased by 22~48% up to the 3wt.%, but decreased by 14~22% at the 4wt.%. The pressure drop was increased by the maximum of 100% as oil concentration was increased.

  • PDF

A High Efficiency LLC Resonant Converter-based Li-ion Battery Charger with Adaptive Turn Ratio Variable Scheme

  • Choi, Yeong-Jun;Han, Hyeong-Gu;Choi, See-Young;Kim, Sang-Il;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.124-132
    • /
    • 2018
  • This paper proposes an LLC resonant converter based battery charger which utilizes an adaptive turn ratio scheme to achieve a wide output voltage range and high efficiency. The high frequency transformer of the LLC converter of the proposed strategy has an adaptively changed turn ratio through the auxiliary control circuit. As a result, an optimized converter design with high magnetizing inductance is possible, while minimizing conduction and turn-off losses and providing a regulated voltage gain to properly charge the lithium ion battery. For a step-by-step explanation, operational principle and optimal design considerations of the proposed converter are illustrated in detail. Finally, the effectiveness of the proposed strategy is verified through various experimental results and efficiency analysis based on prototype 300W Li-ion battery charger and battery pack.

Improved Gate Drive Circuit for High Power IGBTs with a Novel Overvoltage Protection Scheme (과전압 제한 기능을 갖는 새로운 IGBT 게이트 구동회로)

  • Lee, Hwang-Geol;Lee, Yo-Han;Suh, Bum-Seok;Hyun, Dong-Seok;Lee, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.346-349
    • /
    • 1996
  • In application of high power IGBT PWM inverters, the treatable power range is considerably limited due to the overvoltage caused by the stray inductance components within the power circuit. This paper proposes a new gate drive circuit for IGBTs which can actively suppress the overvoltage across the driven IGBT at turn-off and the overvoltage across the opposite IGBT at turn-on while preserving the most simple and reliable power circuit. The turn-off driving scheme has adaptive feature to the amplitude of collector current, so that the overvoltage is limited much effectively at the larger collector current. The turn-on scheme is to decrease the rising rate of the collector current by increasing input capacitance during turn-on transient when the gate-emitter voltage is greater than threshold voltage. The experimental results under various normal and fault conditions prove the effectiveness of the proposed circuit.

  • PDF

A High Performance ZVT-PWM Boost Rectifier with Soft Switched Auxiliary Switch (스프트 스위칭 보조 스위치를 가지는 ZVT-PWM 부스트 컨버터)

  • 김윤호;김윤복;정재웅
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.265-268
    • /
    • 1998
  • This paper presents a soft-switching average current control PWM high power factor boost converter. Conventional boost ZVT-PWM converter has a disadvantage of hard-switching for auxiliary switch at turn-off. A soft switched auxiliary switch is proposed to achieve a high performance ZVT-PWM boost rectifier. The simulation and experimental results show that soft switching operation can be maintained for wide line and load range, which in turn improves the converter performance in terms of efficiency, switching noise and circuit reliability.

  • PDF

Switching Method of 3-phase Interleaved Bidirectional DC-DC Converter to Achieve High Efficiency in Wide Load Range (넓은 부하영역에서 고효율을 얻기 위한 3상 인터리브드 양방향 DC-DC 컨버터의 스위칭 기법)

  • Jung, Jae-Hun;Seo, Bo-Gil;Sun, Daun;Nho, Eui-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1306-1314
    • /
    • 2015
  • This paper deals with a switching method of a three-phase interleaved bidirectional DC-DC converter to obtain high efficiency in wide load range. The proposed soft-switching method provides ZVS and ZCS at turn-on, and ZVS at turn-off of the switch as well as considerably reduced conduction loss in light load. Simulation and experiment are carried out with a bidirectional DC-DC converter having the power rating of 3 [kW], and those results show the validity of the proposed switching method.

Study on the Armature Winding Design of Interior Permanent Magnet Synchronous Motor for Maximum Power (최대 출력 확보를 위한 매입형 영구자석 전동기의 전기자 권선설계)

  • Lim, Ho-Kyoung;Lee, Jeong-Jong;Lee, Tae-Guen;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.875_876
    • /
    • 2009
  • Recently, Interior Permanent Magnet Synchronous Motor(IPMSM) is widely used in the industry applications such as power train for hybrid vehicles and compressor motors of air-conditioner due to its high power density and wide speed range. There are some ways for confirming of maximum power in IPMSM. However, This paper suggests that there is a way about making sure maximum power by reducing turn numbers of armature winding. Setting up the voltage equation through the equivalent circuit and vector diagram of IPMSM first, and then estimating the parameter and power of IPMSM by changing the turn numbers of armature winding and voltage. In order to satisfy output power, the turn numbers of armature winding is changed by using the characteristic analysis, and then checking whether secure maximum power or not.

  • PDF

Optimal Design of a DC-DC Converter for Photovoltaic Generation

  • Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.3
    • /
    • pp.40-49
    • /
    • 2011
  • This paper presents novel circuit topology of half-bridge soft-switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed, half-bridge high frequency PWM inverter with a high frequency planar transformer link PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode-equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC bus lines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, high switching frequency IGBTs can actually be selected in the frequency range of 40[kHz] under the principle of soft-switching. The performance evaluations of the experimental setup are illustrated practically.

A Study on The Torque Ripple Reduction of LSRM (LSRM의 토크리플 저감에 관한 연구)

  • Sung, Ho-Kyong;Jho, Jeong-Min;Lee, Jowng-Min;Kim, Bong-Sub;Yu, Moon-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.232-234
    • /
    • 2005
  • In this paper, A fuzzy logic based turn-off angle compensator for torque ripple reduction in a linear switched reluctance motor is proposed. The turn-off angle, as a complex function of motor speed and current, is automatically changed for a wide speed range to reduce torque ripple. Simulation results are presented that show ripple reduction when the turn-off angle compensator is used.

  • PDF