• Title/Summary/Keyword: Turf growth

Search Result 152, Processing Time 0.017 seconds

Effect of Sand Particle Sizes on Turf Vegetation of Creeping Bentgrass (모래입경이 Creeping Bentgrass 잔디 초지의 식생에 미치는 영향)

  • Park Sung-Jun;Cho Nam-Ki;Kang Young-Kil;Song Chang-Khil;Cho Young-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.3
    • /
    • pp.205-210
    • /
    • 2005
  • This study was conducted from March 21 to July 9 in 2004 at JeJu Island to investigate the effect of different particle sizes (0.3-0.5, 0.5-0.8, 0.8-1.0, 1.0-1.5 and 1.5-2.0mm) on creeping bentgrass vegetation. The results obtained were summarized as follows; plant height became shorter as particle size was increased from 0.3-0.5 to 1.5-2.0 n. Root length, Minolta SPAD-502 chlorophyll reading value, leave and root weight were directly proportional plant height response. Degree of land cover and density of creeping bentgrass decreased as the particle size was increased from 0.3-0.5 to 1.5-2.0nm, and degree land cover and density of weed increased. The number of weed species were increased as the sand particle size was increased. Then ranking of the dominant weeds were Portulaca oleracea, Trifolium repens and Cyperus amuricus (at 0.3-0.5 and 0.5-0.8mm particle size), Trifolium repens, Portulaca oleracea and Polygonum hydropiper (at 0.8-1.0mm particle size), Portulaca oleracea, Polygonum hydropiper and Poa annua (at 1.5-2.0mm particle size). Based on the these findings, the optimum sand particle size for growth of creeping bentgrass seems to be about 0.3-0.5m in volcanic ash soils of Jeju island.

Inter-ramet Physiological Integration Detected in Buffalograss(Buchloe dactyloides (Nutt.) Engelm.) under Water Stress (수분스트레스 하에 있는 버팔로그래스에서 검출된 무성생식체의 생리학적 조정)

  • Qian, Yongqiang;Li, Deying;Han, Lei;Ju, Guansheng;Liu, Junxiang;Wu, Juying;Sun, Zhenyuan
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.331-344
    • /
    • 2009
  • Buffalograss is an important turfgrass species with excellent cold, heat, and drought tolerance. Understanding the physiological integration of buffalograss under heterogeneous conditions helps to develop cultural practices that better use limited resources for uniform turf quality. The objective of this study was to evaluate physiological integration of buffalograss under water deficit stress and the involvement of lipid peroxidation and antioxidants in the process. In one experiment, buffalograss was planted in the center of a four-compartment growth unit. Watering frequencies, once a week(+) and once in two weeks(-), were combined with the sand(S) or peat(P) in each unit to generate five total treatments(P+S-P-S+, P+P+P+P+, S-S-S-S-, P-P-P-P-, and S+S+S+S+). The average number of shoot established from the heterogeneous root-zone medium was higher than the average of four possible homogeneous media. In second experiment, single ramet in Hoagland solution($S_0$) or single ramet in Hoagland solution with 20% PEG-6000($S_s$) were compared with two connectedramets under different treatments. Treatments for connected ramets were young ramet in Hoagland solution($Y_{os}$) and old ramet in Hoagland solution with 20% PEG-6000($O_{os}$), and old ramet in Hoagland solution($O_{ys}$) and young ramet in Hoagland solution with 20% PEG-6000($Y_{ys}$). Lipid peroxidation, antioxidants, and proline showedphysiological integration between ramets subjected to different levels of water stress. Superoxide dismutase(SOD), Guaiacol peroxidase(G-POD), malondialdehyde(MDA), and free proline also showed different time courses and relative activities during the physiological integration.