• Title/Summary/Keyword: Turf cover

Search Result 24, Processing Time 0.03 seconds

Effect of Cool-season Grass Overseeding on Turf Quality, Green Period and Turf Density in Zoysiagrass Lawn (한국잔디에 한지형잔디 덧파종에 따른 잔디품질, 녹색기간 및 밀도에 미치는 영향)

  • Han, Sang-Wook;Soh, Ho-Sup;Choi, Byoung-Rourl;Won, Seon-Yi;Lee, Sang-Deok;Kang, Chang-Sung
    • Weed & Turfgrass Science
    • /
    • v.6 no.4
    • /
    • pp.333-344
    • /
    • 2017
  • This study was conducted to examine the effect of cool-season grass overseeding on the green period, turf quality and density in zoysiagrass lawn. Treatments were perennial ryegrass (PR) overseeding ($60g\;m^{-2}$) on medium-leaf type zoysiagrass, Kentucky bluegrass (KB) overseeding ($20g\;m^{-2}$) on medium-leaf type zoysiagrass and narrow-leaf type zoysiagrass, and no overseeding on medium-leaf type zoysiagrass. Overseeding of KB or PR effectively provided quality improvement of zoysiagrass lawn by extending green-period about one month in spring and two months in fall season. PR overseeding showed quick green cover within 2-3 weeks but decreased the quality of overseeded zoysiagrass lawn during the summer season. Whereas, KB overseeding showed slow green cover taking two to three month after seeding but provided stable and good turf quality throughout the years. KB or PR overseeding significantly increased the turf density of zoysiagrass lawn except the period of summer depression of PR. The ground coverage of cool-season grasses ranged from 30 to 80% with considerable seasonal variation. As a result, KB and PR have their strengths and weaknesses as an overseeding material. Thus, the use of KB and PR as a mixture would provide better overseeding performance in zoysiagrass lawn.

Comparative Performance of Three Tropical Turfgrasses Digitaria longiflora, Axonopus compressus and St. Augustinegrass under Simulated Shade Conditions

  • Chin, Siew-Wai
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • Shade affects turf quality by reducing light for photosynthesis. The shade tolerance of the tropical grasses, Digitaria longiflora and Axonopus compressus were evaluated against Stenotaphrum secundatum (St. Augustinegrass). The grasses were established under shade structures that provide 0%, 50%, 75% or 90% shade level for 30 days. A suite of leaf traits, recorded from similar leaf developmental stage, displayed distinct responses to shade conditions. Leaf length, relative to control, increased in all three species as shade level increased. The mean leaf extension rate was lowest in St. Augustinegrass (80.42%) followed by A. compressus (84.62%) and D. longiflora (90.78%). The higher leaf extension rate in D. longiflora implied its poor shade tolerance. Specific leaf area (SLA) increased in all species with highest mean SLA increase in D. longiflora ($348.55cm^2mg^{-1}$)followed by A. compressus ($286.88cm^2mg^{-1}$) and St. Augustinegrass ($276.28cm^2mg^{-1}$). The highest SLA increase in D. longiflora suggested its lowest performance under shade. The percent green cover, as estimated by digital image analysis, was lowest in D. longiflora (53%) under 90% shade level compared to both species. The relative shade tolerance of the three turfgrasses could be ranked as St. Augustinegrass > A. compressus > D. longiflora.

Effect of Split Nitrogen Application Times on Turf Vegetation of Creeping Bentgrass (질소 분시횟수가 Creeping Bentgrass 잔디초지의 식생에 미치는 영향)

  • Park, Sung-Jun;Cho, Nam-Ki;Kang, Young-Kil;Song, Chang-Khil;Cho, Young-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.2
    • /
    • pp.119-124
    • /
    • 2005
  • This study was conducted from March 21 to July 8 in 2004 at JeJu Island to investigate the influences of split nitrogen application times on creeping bentgrass vegetation. Nitrogen rate was 20 kg/10a and it was applied from once to 5 times. The result obtained were summarized as follows; plant height was getting longer as nitrogen was split applied from once to 5 times. So it was longest at 5 times split nitrogen application, but it was no significance from 4 to 5 times. Root length, Minolta SPAD-502 chlorophyll meter reading value, leave and root weight n[e directly proportional plant height response. Degree of land cover Iud density of creeping bentgrass increased as nitrogen was split applied from once to 5 times. But degree of land cover md density of reed decreased. The number of reed species on decreased as nitrogen was split applied from once to 5 times. Then ranking of the dominant weeds were Portulaca oleracea Polygonum hydropiper and Stellaria media (at once split time nitrogen application), Portulaca oleracea, Polygonum hydropiper and Digitaria adscendens (at 2 split times nitrogen application), Digitaria adscendens and Portulaca oleracea Polygonum hydropiper, (at 3 split times nitrogen application), Portulaca oleracea, Poa annua and Polygonum hydropiper (at 4 md 5 split times nitrogen application). These results indicate that the optimum frequency of split N applications is four times for growth of creeping bentgrass in volcanic ash soils of Jeju island.

Winterkill and Strategy of Golf Course Management: A Review (동절기 피해의 이해와 겨울철 골프장 관리: 리뷰)

  • Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.133-137
    • /
    • 2011
  • Winterkill can be defined as any injury including freeze stress kill, winter desiccation, and low temperature disease to turfgrass plants that occurs during the winter period. The major damages from winterkill were low temperature kill, crown hydration, and winter desiccation. Low temperature kill is caused by air and soil temperature. Soil temperature affect more severe to turfgrass than air temperature because low soil temperature cause fetal damage to turfgrass crown. Crown hydration is a form of winter injury in which intercellular water within the plant freezes and causes physical injury to the cell membrane and wall. This is eventually resulted in dehydration of cell. Winter desiccation is the death of leaves or whole plants due to drought during the winter period. To reduce winterkill damage, cultivar selection is very important. If changing cultivar is not allowed, cold temperature hardiness needs to be increased by providing nutrients especially phosphorus and potassium in the late fall. Turf cover is effective way to reduce winterkill damage. Remaining snow is positive process to reduce winterkill damage by insulating soil temperature. The previous researches reported many materials as turf cover such as straw, polypropylene, polyester, and wood mat. Aeration and topdressing is one of the process against winterkill. Both methods are mainly conducted to reduce thickness of thatch layer. In recent, relatively new materials called black or winter topdressing sand are used to protect soil temperature from low air temperature and thaw ice crystal that may remain in soil.

Influence of Grass Cover on Water Use and Shoot Growth of Young 'Fuji'/M.26 Apple Trees at Three Soil Water Regimes in Double Pot Lysimeters (토양수분영역을 달리한 double pot-lysimeter에서 자라는 '후지'/M.26 사과나무의 수분이용과 신초 생장에 미치는 잔디피복의 영향)

  • Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.357-364
    • /
    • 1999
  • This study measures the influence of grass cover on water use and shoot growth of apple trees growing under different soil water regimes in temperate climate conditions and evaluates monthly crop coefficients of such conditions during four months of the growing season in 1995. To do so, double pot lysimeter experiments of 3-year-old Fuji' apple (Males domestica Borkh.) trees under a transparent rain shield were designed and installed. Trees were triplicate under three soil water regimes: (A) drip-irrigation at -50 kPa of soil matric potential (IR50). (B) drip-irrigation at -80 kPa of soil matric potential (IR80), and (C) constant shallow water table at 0.45 m below the soil surface (WT45). In each treatment, two soil surface conditions were tested: the soil surface bare, and covered with turf grasses. Mean monthly water use increased with increasing soil matric potential for drip irrigation and was greatest in the WT45 treatment. Monthly crop coefficients increased linearly in time for drip-irrigated apple trees ($r^2$ values of $0.953^{***}$ for turf grass-covered system and of $0.862^{***}$ for bare surface system), while those obtained in the WT45 treatment fluctuated, Duncan's multiple range tests for shoot growth showed that grass-covered IR50 was most favorable to apple trees. while bare surface waterlogged situation was most adverse at least in part due to a lack of oxygen in the root zone. Mid-season leaf Kjeldahl-N was higher in drip-irrigated apple trees than in WT45 trees, while soil Kjeldahl-N was not different irrespective of treatments.

  • PDF

A Study on the Seasonal Color Characteristics of Warm- and Cool-Season Grasses II. Color Characteristics and Life-span of Leaves in Turfgrasses and Cover Plants+ (난지형 및 한지형 지피식물의 엽색변화에 관한 연구 II. 엽색특성 및 엽수명연장)

  • 심재성;민병훈;서병기
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.4
    • /
    • pp.293-316
    • /
    • 1995
  • Nitrogen fertilization and cutting practice were studied on turfgrasses and cover plants to investigate the possibility of maintaining green color during the growing season. Research also involved the effect of the nitrogen on a few morphological characteristics of leaf performance elements which might give an information to coloration and life-span of turf leaves. Treatments in the first experiment undertaken on pot included one N level: 350kgN /ha applied as compound fertilizer in split applications of one-half in mid-May and the rest both in late June and August, and four spring-summer cuts: late May, late June, late July and late August. The soil filled in pot a moderately well-drained sandy loam. In the second experiment(field observation) leaf length and width, inflorescence and flowering, and color performance were also investigated. With nitrogen fertilizer applied on turfs, desirable turf color was maintained during a period of poor coloration in specific seasons such as mid-summer for cool season grasses and late fall for warm season grasses comparing to the non-treatment. However, this was not stimulated by cutting treatment to nitrogen status existed. Cutting effect on coloration was more remarkable in both Korean lawngrass and Manilagrass than in cool season turfgrasses such as Italian rye-grass, perennial ryegrass and tall fescue. Especially down-slide of leaf color in cool season turfgrasses could he detected in mid-summer /early fall season ranging up to mid-September. In early November as well as mid-September, Italian ryegrass, perennial ryegrass and tall fes-cue retained a high level of green color as followed by nitrogen application and cutting treatment, and little detectable variation of leaf color notation between cool season turfgrasses was obtained. However, Korean la'vngrass and Manilagrass failed to retain the green color until early November. Color notations in cool season turfgrasses investigated early November on the final date of the experiment ranged from 5 GY 3/1 to 4/8 in 'Ramultra' Italian ryegrass, 'Reveile' perennial ryegrass and 'Arid' tall fescue, but those in Zoysiagrasses were 7.5 YR 4/8 in Korean lawngrass and 2.5 y 5 /6 in Manilagrass. Life-span of leaves was shorter in Italian ryegrass, perennial ryegrass and tall fescue than in beth Korean lawngrass and Manilagrass with and without nitrogen application. In general, leaves appeared in early May had a long life-span than those appeared in late April or mid-June. Nitrogen application significantly prolonged the green color retaining period in perennial ryegrass, Italian ryegrass, Korean lawngrass and Manilagrass, and this was contrasted with the fact that there was no prolonged life-span of leaves emerging in early May and mid-June in tall fescue. SPAD reading values in 48 turfs and cover plants investigated in the field trial were increasing until late June and again decreasing till September. Increasing trends of reading value could be observed in the middle of October in most of grasses. On the other hand, clovers and reed canarygrasses did not restore their color values even in October. Color differences between inter-varieties, and inter-species occurred during the growing season under the field condition implicated that selection of species and /or cultivars for mixture should be taken into consideration. In Munsell color notation investigated in the final date in the middle of November, 32 cultivars belonged under the category of 5 GY and 10 cultivars under the category of 7.5 GY. This was implying that most of cool season turfs and cover plants grown in the center zone of Korean Peninsula which are able to utilize for landscape use can bear their reasonable green color by early or mid-November when properly managed. The applicable possibilities of SPAD readings and Munsell color notation to determine the color status of turfgrasses and cover plants used in this study were discussed.

  • PDF

Seaweed Community of the Subtidal Rocky Habitats along the Coast of Geumo Archipelago in the Central South Sea of Korea (한국 남해중부 금오열도 연안 암반 조하대 해조군집의 구조)

  • Kang, Rae-Seon;Kim, Jong-Man
    • ALGAE
    • /
    • v.19 no.4
    • /
    • pp.339-347
    • /
    • 2004
  • Seaweed community of the sub tidal rocky habitats along the coast of Geumo Archipelago in the central South Sea of Korea is described. This area is characterized by archipelago in which islets are separated by shallow bottom sediments (primary, muddy sand), and turbidity is generally high due to the resuspension of bottom sediments. The hard substrata available for algal attachment are limited to less than 10 m in depth. Thirty sites were randomly chosen along the coast from August 2003 to September 2003 and a 50 m long transect was established at each site. The transect began at a depth of 1 m and ended at the depth of 9 m. The percent cover of all species other than crustose coralline algae was estimated at 2 m depth intervals along the transect using a 0.25 m$^2$ PVC quadrat with 25 squares. Thirty-six species were identified including 6 Chlorophyta, 10 Phaeophyta and 20 Rhodophyta. Species with more than 5% mean bottom cover were Gelidium amansii, Corallina pilulifera, Amphiroa dilatata and Carpopeltis cornea, which formed dense turf-forming algal assemblages at 1-5 m depth. At all sites except S11-S15 located in the western coast of Sorido, bottom covers of seaweed species at the depth deeper than 7 m were less than 6%. The lower limit of algal assemblages was 9 m in depth. We speculate that the limited water clarity and vertical extent of hard substrata available for the settlement of seaweed species are the direct cause of reducing the diversity, abundance and distributional extent of algal assemblages in the area.

Selection of Turfgrass Species and Cultivars for Hydroseeding on Road Side Slope Areas (도로비탈면의 종자분사공법용 잔디종류의 선택)

  • 주영규
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.3
    • /
    • pp.173-185
    • /
    • 1995
  • Hydroseeding technique is a very popular method of revegetating slope areas through the control of soil erosion and stability by seeding grasses. This study was conducted to select turfgrass species and cultivars for hydroseeding. Experiment plots were established on various soil types and environmental conditions at Singar-Ansan high-way construction site. The investigation was designed in three cutting, one back-filling and other three spare sites with various seed mixtures. Results indicated that combinations of seed mixtures influenced seed germination and rates of surface cover. In a view of long term, vegetation shifts should be influenced by characters of slopes and micro-climate conditions. Hydroseeding did not show good results on rocky slope areas. Revegetation was only going on where there had soil. The combination of seed mixture with a higher rate of perennial ryegrass had relatively good revegetation with faster germination and seedling growth. Improved turf-type tall fescue Arid ⓡ and Falcon ⓡ seemed to have good environ-mental adaptation and drought tolerance. Wild or old type cultivars showed relatively slow green-up in spring and growth rates at the next year of seeding. For the harmonious landscaping with surrounding area, the combination of native grass mixture with cool-season grasses had good results. Slow and low revegetation rate at hack-filling site seemed to be caused by the poor development of capillary tubes in sub-soil. It was shown that a high correlation between seed germination and revegetation rate, and between three-month later coverage rate and final rate. The evaluation of coverage rate after three month seems to he acceptable to decide the accomplishment of hydroseeding results on rode side slopes.

  • PDF

Reproduction rate and stolon production rate after transplantation of grass germplasm

  • Jung, Ji Hyeon;Han, Gyung Deok;Kim, Jaeyoung;Chung, Yong Suk
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.465-471
    • /
    • 2021
  • Grass breeding starts with the process of selecting grass with good traits, and this operation consumes a lot of resources. Therefore, there is a need for an efficient screening method. Stolon is a unit for the storage of carbohydrates and vegetative propagation, which enhances grass growth and grass sod. Grass varieties with active production of stolons have excellent traits because they reproduce quickly and have a high density. To select grass with such a trait, the survival rate and the production rate of stolon after transplantation of 72 grass germplasms were investigated. After transplantation, the survival rate ranged from 75% to 100%. The majority of the grass cultivars showed a 100% survival rate. Therefore, the group was divided into two groups: A grass variety showing 100% survival and a grass variety that did not show 100% survival. The grass cultivar group, which showed a 100% survival rate after transplantation, included 61 turf varieties, and the rates of stolon production in these grass varieties ranged from 0 to 100%. In contrast, 10 varieties were included in the grass cultivar group that did not show 100% survival after transplantation. These cultivars had a stolon production rate of 0 to 33%. The results suggest that grass germplasms with a 100% survival rate should be selected.

Water-Proof Technology for Water Hazard in Golf Course in Korea (국내 골프장 연못의 방수기술)

  • Kim Won-Jo;Lee In-Hwan;Lee Jae-Pil;Kim Doo-Hwan
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.2
    • /
    • pp.77-95
    • /
    • 2004
  • This study was conducted to find out definition, specification and characteristics of water-proof method for pond at golf courses that located in the mountain in Korea. Water-proof method of pond was selected by location, kind of soil, area, depth, cost, construction period and so on. 1. Soil Bentonite Sealing Liner(SBL) is to mix soil with a good quality bentonite. Then the mixed material was dressed on the bottom of pond. $\\$Merit of SBL is to purify the water and planting is possible. It can also reduce construction period and is economical. It's easy to find out the leak points. Demerit of SBL is expensive, if good quality soil is not in constructing site. Shape of pond edge is simple. 2. Ethylen Propylene Diene Monomer Sheef(EPDM-Sheet) makes use of sheet that resists to acid and alkaline. EPDM-Sheet spreads out as a mat on the pond for water-proof. Merit of EPDM-Sheet is to perfectly prove water and make a diverse shape of pond edge. Demerit of EPDM-Sheet is not friendly to environment. It needs drain system, air ventilation and long period of construction. It is also difficult to find out leaking points in this method. 3. Water proof of ESS-13 uses ESS-13 that is resin of vegetable matter and friendly to environment. To prove water of pond, ESS-13 is delicate with water in the pond. After that, Ess-13 in the water is expanded at pore space in the soil and cover with soil. ESS-13 can be to prove a leaking pond in golf course under business. ESS-13 is cheap and it needs short construction period. It does not need to switch the old water-proof system, additionally. It needs to move fishes to other place before utilizing ESS-13.