• Title/Summary/Keyword: Turf

Search Result 322, Processing Time 0.022 seconds

The Influence of Traffic Time and Fertilizer Type on the Quality of Golf Course Putting Greens (답압시간과 비료종류가 골프코스 그린 잔디의 품질에 미치는 영향)

  • Lee, Sung-Woo;Lee, Jae-Pil;Kim, Doo-Hwan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • Traffic management is becoming an important issue in turfgrass practise on golf course. The objective of this study was to investigate the combined impact of different traffic times and types of fertilization. Traffic treatment was applied in morning (AM), noon, and afternoon (PM). Fertilizers used include faster-release fertilizer (21-17-17) and slow-release fertilizers (12-6-18, 11-3-22, 20-3-20, 10-3-10). Experiment was conducted from Oct. 1 to Nov. 30, 2005 on a nursery putting green of Incheon Grand Golf Club. The growth and quality of creeping bentgrass (Agrostis polustris cv. 'Seaside II') were evaluated on visual leaf color, leaf texture, shoot density, and root length. The measurement at 20 days after treatment, turfgrass color and leaf texture showed the best result on 10-15-10 + Noon-traffic plot. Turf quality and traffic tolerance were not different at Am and Pm traffic treatment. However, traffic stress in early morning and late evening caused the most severe damage to the turfgrass. Shoot density was the highest in 10-15-10 + Noon-traffic treatment but root length was not different among treatments after 30 day measurement. Among the fertilizers, slow release fertilizer resulted in higher turf quality and traffic tolerance than fast release fertilizer, however, shoot density did not showed a significantly different. For the fast recuperation of turfgrass from traffic injury in the early winter, it is recommended to avoid early morning and late evening traffic such as cup replacement and other maintenance practise. It is also recommended to delay the first tee-up time and ending early for last tee time during cold weather season.

Comparison of Green Color Retention of Zoysiagrass and Cool-season Grass under Multilayer System, USGA System, and Mono-layer System of Sports Field (스포츠용 다단구조, USGA구조 및 약식구조 지반에서 한국잔디 및 한지형 잔디의 녹색기간 비교)

  • Kim, Kyoung-Nam
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.342-353
    • /
    • 2016
  • This study was initiated to evaluate green color retention under three different soil systems. Several turfgrasses were evaluated in multi-layer, USGA, and mono-layer systems. Turfgrass entries were comprised of three cultivars of Korean lawngrass (Zoysia japonica Steud.) as warm-season grass (WSG) and three blends and three mixtures of Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), and tall fescue (TF, Festuca arundinacea Schreb.) as cool-season grass (CSG). Significant differences were observed in visual turf color and green color retention among soil systems and turfgrasses. Both the multi-layer and USGA systems were highly associated with better color ratings and longer color retention, as compared with the mono-layer system. Seasonal variation of visual turf color greatly occurred from late December to early spring. CSG exhibited longer color retention than did WSG. The latter maintained green color for approximately 6 months, regardless of the soil system. Spring green-up of Korean lawngrass occurred from early to middle May, while it underwent discoloration from late October to early November. Among the CSGs green-up occurred between early March and early April and leaf color was maintained until middle December to early February. Therefore, the CSGs were green for 8.5 to 11 months, depending on turfgrass and soil system. The mean period of green color duration across all soil systems was approximately 10-11, 9-10 and 8.5-9.0 months for PR, KB and TF, respectively. As for the CSG mixtures, the greater the proportion of PR, the longer the green color retention, while the higher the proportion of TF, the shorter the color retention. There was greater variation in green color duration among the CSGs than the WSGs. Across soil systems, color retention differences of 2 to 6 days were observed for the Korean lawngrass, but 7 to 36 days for the CSGs. These results demonstrate that green color retention varied greatly according to soil systems and also among turfgrasses. Selections of turfgrass and soil system should be made using a concept-oriented approach, when establishing garden, park, soccer field, golf course and other sports field. Information obtained in this study can be used to select soil systems and turfgrasses based on the expected degree of leaf color retention.

Effect of Sowing Dates on Turf Vegetation of Creeping Bentgrass (파종기에 따른 Creeping Bentgrass 잔디초지의 식생변화)

  • Cho, Nam-Ki;Kang, Young-Kil;Song, Chang-Khil;Cho, Young-Il;Park, Sung-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.2
    • /
    • pp.125-130
    • /
    • 2005
  • This study was conducted from March 16 to July 6 in 2004 at Jeju Island to investigate the influences of sowing dates(on March 16, March 26, April 5, April 15 and April 25) on creeping bentgrass vegetation. The result obtained were summarized as follows; Plant height was 22.7 cm at March 16 planting. It was longest but after that planting, plant height gradually shorted. Then it was shortest at April 25 planting(16.6 cm). Root length and Minolta SPAD-502 chlorophyll reading value were directly proportional plant height response. Leave and root weight were greatest at March 16 planting. It were 1,373 kg /10a and 2,374 kg /10a, respectively. These weight decreased gradually as planting was delayed from March 16 to April 25. Degree land cover and density of creeping bentgrass were $98.0\%$ and $99.3\%$, respectively, at March 16. After that planting they were decreased ($97.5\%$, $98.7\%$). But degree land cover and density of weed tended to increased gradually as the planting was delayed. The number of weed species were increased from March 16 to April 25. It showed increase that Poa annua, Stellaria media and Chenopodium album var. centrorubrum(at March 16 planting), Poa annua, Digitaria adscendens and Chenopodium album var. centrorubrum(at March 26 planting), Digitaria adscendens, Chenepodium album var. centrorubrum and Stellaria media(at April 5 planting), Digitaria adscendens, Stellaria media and Chenopodium album var. centrorubrum(at April 15 planting), Digitaria adscendens, Polygonum hydropiper, Chenopodium album var. centrorubrum(at April 25 planting). Based on the these findings, optimum sowing date for growth of creeping bentgrass seems to be about early seeding in atmospheric phenomena and volcanic ash soils of Jeju island.

Vertical Shoot Growth of Korean Lawngrass (Zoysia japonica Steud.) Influenced by Trinexapac-ethyl, Amidochlor, and Mefluidide (Trinexapac-ethyl, Amidochlor 및 Mefluidide가 들잔디 직립생장에 미치는 효과)

  • Kim, Kyoung-Nam;Kim, Yong-Seon
    • Horticultural Science & Technology
    • /
    • v.17 no.5
    • /
    • pp.572-577
    • /
    • 1999
  • Research was initiated to evaluate plant growth regulator effects on the vertical shoot growth of Korean lawngrass and to determine desirable growth regulator and its rate. The experiments were conducted twice at different sites in 1995. All the tested growth regulators inhibited the growth, but the inhibition period was variable among the product in Experiments I and II. During the first week after treatment, there was approximately 10 to 20% growth reduction in most of the treated plots. In the amidochlor-treated plots, growth suppression was effective for 3 to 4 weeks at low to medium rates ($0.60mL{\cdot}m^{-2}$). A Type II growth regulator, trinexapac-ethyl exceeding the medium rate of $0.08mL{\cdot}m^{-2}$ consistently tended to suppress vertical shoot growth for 8 weeks, being above 35% reduction in both experiments. In the plots applied with mefluidide, growth suppression appeared with foliar discoloration 3 or 4 days earlier than the other growth regulators and continued to work till the 8 weeks after treatment. Suppression intensity on vertical shoot growth increased with time after treatment up to a certain period of time, depending on growth regulators. Generally, the higher the application rate, the greater the suppression intensity. Seasonal variation of activity and effectiveness of growth regulators was observed, resulting in lower suppression intensity in July than in June. It is expected to reduce mowing requirements by 30 to up to 60% for a certain period with a specific growth regulator. In low to medium maintenance of Korean lawngrass turf, a long-term suppression may be more effectively accomplished with trinexapac-ethyl rather than mefluidide and amidochlor in terms of vertical shoot growth inhibition. Therefore, turf managers will need to select proper growth regulator and determine optimum rate of application for turfgrass management, based on a defined period of mowing reduction.

  • PDF

Managing Mixtures of Tall Fescue (Festuca arundinacea Schreb) and Zoysiagrass (Zoysia japonica Steud.) for Athletic Turf (톨 페스큐와 한국들잔디로 혼합 조성된 운동장 잔디관리)

  • Li, Deying;Han, Lei
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.197-216
    • /
    • 2008
  • Managing a mixture of zoysiagrass with tall fescue has been proposed in transitional zone as a practical practice to combine the advantages of the two species and compensate the limitations. To manage the mixture is a challenge because two species are involved. The objective of this study was to determine if zoysiagrass/tall fescue mixture can be maintained with proper mowing and fertilization under simulated sport traffic at an acceptable quality level. Zoysiagrass was seeded in June and tall fescue was overseeded in August 1996. In November 1996, zoysiagrass coverage was 62.36, 29.88, and 30.02% for 0, 50, and $100\;Kg\;ha^{-l}\;N$ rates, respectively. At the same time, zoysiagrass coverage was 23.53, 41.95, and 57.40% for the mowing heights of 6.5, 5.0, and 3.5 cm, respectively. Zoysiagrass and tall fescue coverage in July 1997 was showing the same trend as in the late season of 1996 although the differences were not as big. There were significant interactions between N fertilization rates and mowing heights. In November 1998, the zoysiagrass coverage was different among the two tall fescue variety mixtures, 21.68, and 32.25% in 'Arid' and 'Grasslands Garland', respectively. Zoysiagrass coverage was favored in lower mowing height, lower N rates, and lower traffic. Interaction effects on zoysiagrass were found between tall fescue variety and nitrogen rate, tall fescue variety and mowing height, and traffic and nitrogen rate. Zoysiagrass shoot density was 7.42, 25.47, and 58.95% for mowing heights of 6.5, 5, and 3.5 cm, respectively; and it was 47.27, 20.27, and 26.26% for N rates of 0, 50, and $100\;Kg\;ha^{-l}\;$, respectively in 1998. The effects on zoysiagrass shoot density from the interaction of N rate and tall fescue variety was significant in 1998. Shoot density responded to the N rate, mowing height, and traffic differently from the ground coverage, indicating that shoot and leaf growth have different adaptation strategies.

A Study on the Seasonal Color Characteristics of Warm- and Cool-Season Grasses II. Color Characteristics and Life-span of Leaves in Turfgrasses and Cover Plants+ (난지형 및 한지형 지피식물의 엽색변화에 관한 연구 II. 엽색특성 및 엽수명연장)

  • 심재성;민병훈;서병기
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.4
    • /
    • pp.293-316
    • /
    • 1995
  • Nitrogen fertilization and cutting practice were studied on turfgrasses and cover plants to investigate the possibility of maintaining green color during the growing season. Research also involved the effect of the nitrogen on a few morphological characteristics of leaf performance elements which might give an information to coloration and life-span of turf leaves. Treatments in the first experiment undertaken on pot included one N level: 350kgN /ha applied as compound fertilizer in split applications of one-half in mid-May and the rest both in late June and August, and four spring-summer cuts: late May, late June, late July and late August. The soil filled in pot a moderately well-drained sandy loam. In the second experiment(field observation) leaf length and width, inflorescence and flowering, and color performance were also investigated. With nitrogen fertilizer applied on turfs, desirable turf color was maintained during a period of poor coloration in specific seasons such as mid-summer for cool season grasses and late fall for warm season grasses comparing to the non-treatment. However, this was not stimulated by cutting treatment to nitrogen status existed. Cutting effect on coloration was more remarkable in both Korean lawngrass and Manilagrass than in cool season turfgrasses such as Italian rye-grass, perennial ryegrass and tall fescue. Especially down-slide of leaf color in cool season turfgrasses could he detected in mid-summer /early fall season ranging up to mid-September. In early November as well as mid-September, Italian ryegrass, perennial ryegrass and tall fes-cue retained a high level of green color as followed by nitrogen application and cutting treatment, and little detectable variation of leaf color notation between cool season turfgrasses was obtained. However, Korean la'vngrass and Manilagrass failed to retain the green color until early November. Color notations in cool season turfgrasses investigated early November on the final date of the experiment ranged from 5 GY 3/1 to 4/8 in 'Ramultra' Italian ryegrass, 'Reveile' perennial ryegrass and 'Arid' tall fescue, but those in Zoysiagrasses were 7.5 YR 4/8 in Korean lawngrass and 2.5 y 5 /6 in Manilagrass. Life-span of leaves was shorter in Italian ryegrass, perennial ryegrass and tall fescue than in beth Korean lawngrass and Manilagrass with and without nitrogen application. In general, leaves appeared in early May had a long life-span than those appeared in late April or mid-June. Nitrogen application significantly prolonged the green color retaining period in perennial ryegrass, Italian ryegrass, Korean lawngrass and Manilagrass, and this was contrasted with the fact that there was no prolonged life-span of leaves emerging in early May and mid-June in tall fescue. SPAD reading values in 48 turfs and cover plants investigated in the field trial were increasing until late June and again decreasing till September. Increasing trends of reading value could be observed in the middle of October in most of grasses. On the other hand, clovers and reed canarygrasses did not restore their color values even in October. Color differences between inter-varieties, and inter-species occurred during the growing season under the field condition implicated that selection of species and /or cultivars for mixture should be taken into consideration. In Munsell color notation investigated in the final date in the middle of November, 32 cultivars belonged under the category of 5 GY and 10 cultivars under the category of 7.5 GY. This was implying that most of cool season turfs and cover plants grown in the center zone of Korean Peninsula which are able to utilize for landscape use can bear their reasonable green color by early or mid-November when properly managed. The applicable possibilities of SPAD readings and Munsell color notation to determine the color status of turfgrasses and cover plants used in this study were discussed.

  • PDF

Effect of nitrogen application and clipping height on the vegetative growth of Korean lawn grass (Zoysia japonica Steud.) and Manilagrass (Zoysia mat rella (L.) MERR.) during September/October (질소시용 및 예초고가 한국 잔디(Zoysia japonica Steud.) 및 금잔디(Zoysia matrella MERR.)의 생육후기 영양생장에 미치는 영향)

  • 심재성;윤익석
    • Asian Journal of Turfgrass Science
    • /
    • v.1 no.1
    • /
    • pp.7-17
    • /
    • 1987
  • The experiment with two levels of nitrogen (0. and 300kg / ha / year) and two levels of clipping height (1.5cm and 4cm) was conducted on the field during the period 3 June to 23 October 1985. Clonal lines of korean lawngrass ( Zoysia japonica Steud.) and manilagrass ( Zoysia matrella ( L.) Merr.)of Daejon origin were established in June, as individual clone in rows 30cm apart with a 40cm spacing between clones, actually 4 clones each plot. The results obtained were as follows : 1. When no nitrogen was applied to korean lawngrass, leaf blade which appeared during the August / early September period remained green for a period of about 10 weeks and even leaves emerged in late September lived for 42 days. However, leaf longevity did not exceed 8 weeks as nitrogen was applied. In contrast the leaf longevity of manilagrass which emerged during the mid - August / early September period was 11 weeks and, under the nitrogen applied, 9 weeks, indicating that the life - saen of individual leaf of manilagrass may be longer than that of korean lawngrass. Meanwhile, clipping height had no effect on the leaf longevity in both grasses. 2. During the July / August period, tiller number, green leaf number and DM weight of korean lawngrass were increased significantly with fertilizer nitrogen, but were not with two levels of clipping height. This trend was reversed after late September : no effect of nitrogen was appeared. Instead, lax clipping increased tiller number, green leaf number and DM weight. Green leaves stimulated by lax clipping resulted in the occurrance of more dead leaves in late October. 3. The increase of tiller number, green leaf number, and DM weight of korean lawngrass due to nitrogen application appeared to be of significance in early September. Unlike korean lawngrass, however, this significant increase was maintained to late October when new green leaves still emerge. Clipping height had little effect on the growth of manilagrass by early September, but since then, lax clipping stimulated leaf appearance, possibly resulting in a remained green color of manilagrass turf. 4. Among the stolons outgrown until early September, the primary stolon was not influenced by nitrogen and clipping treatments to produce only 2 - 3 stolons. However, 1st branch stolon as affected by nitrogen increased significantly, so most of stolons which occurred consisted of 1st branch stolon. 5. Until early September, stolon length obtained at nil nitrogen level was chiefly caused by lengthening the primary stolons. By applying nitrogen the primary stolons of korean lawngrass was longer than 1st branch stolons when severe clipping was involved and in turn, shorter than 1st branch stolons when lax clipping was concerned. In manilagrass, 1st branch stolons were much longer than the primary stolons when turf was clipped severely but in conditions of lax clipping, there was little difference in length between primary and 1st branch stolons. 6. Stolon nodes of both korean lawngrass and manilagrass were positively influenced by nitrogen, but no particular increases by imposing clipping height treatment was marked in manilagrass. Although the stolon of korean lawngrass was grown until late october, the growth stimulated by nitrogen was not so remarkable as to exceed that a by nil N. 7. The thickness of korean lawngrass and manilagrass was greatest in late September, but that of manilagrass did not differ significantly from that in late October. 8. The response of stolon length of korean lawngrass to lax clippings was not so great in late October as to that to severe clippings. On the other hand, the positive effect of lax clippings to stolon length in m anilagrass was confirmed even in late October.

  • PDF

Effect of Soil Organic Amendment and Water-Absorbing Polymer on Growth Characteristics in Poa pratensis L. (Poa pratensis L. 에서 유기질 토양개량재 및 수분 중합체가 잔디생육에 미치는 효과)

  • Kim, Kyoung-Nam
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.317-330
    • /
    • 2009
  • Research was initiated to investigate germination vigor, number of leaves, plant height and turfgrass density. A total of 18 treatment combinations were used in the study. Treatments were made of soil organic amendment(SOA), sand, and water-absorbing polymer. Germination vigor, leaf number, plant height and turfgrass density were evaluated in Kentucky bluegrass(KB) grown under greenhouse conditions. Significant differences were observed in germination vigor, leaf number, plant height and turfgrass density among 18 mixtures of SOA and polymer. Highest germination rate was associated with mixture of SOA 20% + sand 80% + polymer 0%, resulting in 56.3% for KB. Number of leaves at 60 DAS(days after seeding) were greater with KB over PR, while plant height higher with PR over KB. Leaf number increased with SOA, being SOA 20% > SOA 100% > SOA 10% and with polymer from 0 to 12%. Plant height was greatest with SOA 20% and lowest with SOA 100%. Greater density was observed with PR rather than KB due to longer plant height. Turf density was best under SOA 10% and poorest under SOA 100% in KB. A further research would be required for investigating the individual effect of K-SAM, Ca, perlite on the turf growth characteristics.

Development of Selective Heribicide for Control of Weeds in Turf (잔디밭 잡초방제(雜草防除)를 위한 선택성(選擇性) 제초제(除草劑)의 개발(開發)에 관한 연구(硏究))

  • Han, Seong-Soo
    • Korean Journal of Weed Science
    • /
    • v.7 no.2
    • /
    • pp.186-199
    • /
    • 1987
  • This study was carried out to investigate the growth of Korean lawn grass (Zoysia japonica Steud.), penncross bentgrass (Agrostis palustris Huda) and seaside bentgrass (Agrostis spp.) under application of 21 pre- and post-emergence herbicides and the weeding effect of 14 annual and 4 perennial weeds with them for the purpose of the systematic chemical weed control in turf. The results obtained were as follows; 1. Napropamide, napropamide + triclopyr and benefin were safe for Korean lawn grass and two kinds of bentgrasses when they were treated at 4 and 25 days after transplanting of turfgrasses. Simazine, lenacil and bentazon inhibited the growth of bentgrasses, but not Korean lawn grass. 2. The preemergence application of simazine, benefin and napropamide + simazine showed excellent control for Digitaria sanguinalis, Cyperus amuricus, Chenopodium album, Portulaca oleracea and Centipeda minima. Lenacil was excellent for control of all the tested weeds except Chenopodium album, napropamide excellent for them except Cyperus amuricus and Portulaca oleraces, and bentazon good for them except Digitaria sanguinalis. When simazine was treated with either napropamide or triclopyr at preemergence of weeds, weeding effect increased without inhibition of lawn growth. 3. The postemergence application of mecoprop, bentazon, benefin + dicamba and benefin + mecoprop was safe to bentgrasses. All the tested postemergence herbicides except simazine + atrazine did not inhibit the growth of Korean lawn grass. 4. Other postemergence herbicides mecoprop and triclopyr were excellent for the control of Echinochloa crusgalli and those except benefin and mecoprop excellent for Kummerovia striata. Digitaria sanguinalis was controlled by treating with all the tested post emergence herbicides and Cyperus amuricus controlled only by bentazon. 5. The growth rates of bentgrasses treated with simazine, lenacil and napropamide + simazine were lower than that of hand-weeded check, and those of benefin, bentazon, napropamide, napropamide + triclopyr, stomp, bensulide and triclopyr were higher than that one when applied at spring season. Korean lawn grass growth appeared to be good under application of all the tested preemergence herbicides at spring. Lanacil and bentazone showed poor control of Echinochloa crusgalli, and bensulide showed poor control of Erigeron canadensis. Also, napropamide and bentazon were not good for Kummerovia striata control. However, at the respective rates of all the tested herbicides, these three weeds were greatly controlled by 85-100% of weeding effect. 6. At the application of autumn season, bentazon, napropamide, pendimethalin, benefin, napropamide + triclopyr, bensulide and triclopyr seemed to be safe against three kinds of turfgrasses. But simazine, napropamide + simazine inhibited the growth of bentgrasses except Korean lawn grass. In terms of weed control performance, triclopyr was poor for controlling Echinochloa crusgalli and bentazon and stomp for Poa annua, napropamide, benefin and bensulide for Stellaria medico. Stellaria uliginosa and Cerastium caespitosum were well controlled by all the tested preemergence herbicides. 7. Korean lawn grass was safe when paraquat and glyphosate were treated at the dormanant season of turfgrass. These herbicides showed excellent controll of Poa annua but poor control of perennials in order of Trifolium repens < Miscanthus sinensis < Calystegia japonica < Artemisia asiatica. 8. In field test, all of 19 herbicides seemed to be safe when treated at Korean lawn grass. All of 10 preemergence herbicides were excellent for controlling annual weeds, but poor for perennial ones. All of 9 postemergence herbicides showed a excellent control for broad-leaf weeds.

  • PDF

QTL Mapping of Resistance to Gray Leaf Spot in Ryegrass: Consistency of QTL between Two Mapping Populations

  • Curley, J.;Chakraborty, N.;Chang, S.;Jung, G.
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.85-100
    • /
    • 2008
  • Gray leaf spot (GLS) is a serious fungal disease caused by Pyricularia oryzae Cavara, recently reported on the important turf and forage species, perennial ryegrass (Lolium perenneL.). This fungus also causes rice blast, which is usually controlled by host resistance, but durability of resistance is a problem. Few instances of GLS resistance have been reported in perennial ryegrass. However, two major QTL for GLS resistance have been detected on linkage groups 3 and 6 in an Italian x perennial ryegrass mapping population. To confirm that those QTL are still detectable in the next generation and can function in a different genetic background, a resistant segregant from this population has been crossed with an unrelated susceptible perennial clone, to form a new mapping population segregating for GLS resistance. QTL analysis has been performed in the new population, using two different ryegrass field isolates and RAPD, RFLP, and SSR marker-based linkage maps for each parent. Results indicate the previously identified QTL on linkage group 3 is still significant in the new population, with LOD and percent of phenotypic variance explained ranging from 2.0 to 3.5 and 5% to 10%, respectively. Also two QTL were detected in the susceptible parent, with similar LOD and phenotypic variance explained. Although the linkage group 6 QTL was not detected, the major QTL on linkage group 3 appears to beconfirmed. These results will add to our understanding of the genetic architecture of GLS resistance in ryegrass, which will facilitate its use in perennial ryegrass breeding programs.