• 제목/요약/키워드: Turbulent flow region

검색결과 501건 처리시간 0.025초

3-Dimensional Locally Elliptic Numerical Predictions of Turbulent Jet in a Crossflow In A Curved Duct (곡관내의 주유동에 분사되는 난류제트에 대한 3차원 국소타원형 수치해석)

  • 정형호;이택식;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제14권2호
    • /
    • pp.470-483
    • /
    • 1990
  • Turbulent jet in a crossflow, issuing from a row of holes on a convex surface of 90 .deg. bend duct, is predicted by a 3-dimensional numerical method. The Cartesian coordinate system in adopted in upstream and downstream tangents and the cylindrical polar coordinate system in curved region. The Reynolds stresses and heat fluxes are obtained from a standard k-e model in the core region and van Driest model in the vicinity of the wall. The governing equations are discretized by a finite volume method and solutions are obtained by a locally elliptic calculation procedure. Pressure and convective terms are treated by SIMPLE algorithm and hybrid scheme respectively. A vortex initially induced by the injected jet has been built up due to the interaction with the secondary flow caused by pressure gradient and centrifugal force. The vortex structure has a strong influence on the wall cooling effectiveness. Another vortex like horseshoe is formed in the vicinity of the injection hole and its strength is getting weak as it moves downward.

Coherent Structures of Turbulent Wake Past a Rotating Circular Cylinder with a Tripping Wire (Tripping wire가 부착된 회전원주에 의한 난류휴류의 응집구조)

  • 부정숙;이종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제19권8호
    • /
    • pp.1927-1939
    • /
    • 1995
  • An experimental investigation is conducted to find out the large scale coherent structures in the intermediate wake past a rotating cylinder with a single tripping wire attached. Relation between the vortex shedding frequency and the spin rate of rotating cylinder and the effects of the tripping wire on the flow characteristics were studied by using spectral analysis and conditional phase average technique, respectively. It is found that the vortex shedding frequency is bound to a certain range and varies regularly as spin rate increases. The coherent structures are compared with those of the plain rotating cylinder in the case of spin rate of 1.0. Distance between the upper and lower center of vortices increase and the vortex shedding time is delayed, the velocity fluctuation energy decreases near the center line of vortices and it spreads out to the outer region. The Reynolds shear stress increases highly in the upper region and the turbulent wake width expands with strong entrainment process.

An Experimental Study on the Wake of a Square Cylinder Using PIV Technique (PIV기법을 이용한 정사각 실린더의 후류에 관한 실험적 연구)

  • 이종붕;장태현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.124-135
    • /
    • 2004
  • An experimental study is performed turbulent flow behind a square cylinder by using 2-D PIV technique. The Reynolds number investigated are 10.000. 30.000 and 50,000. The mean velocity vector, time mean axial velocity turbulence intensity. kinetic energy and Reynolds shear stress behind the cylinder are measured, The numerical method used this study is a CFD code, STAR-CD. The numerical results are compared with these of experimental.

EFFECT OF BASE FLOW AND TURBULENCE ON THE SEPARATION MOTION OF STRAP-ON ROCKET BOOSTERS (기저부 유동 및 난류가 다단 로켓의 단 분리 운동에 미치는 영향)

  • Ko, S.H.;Kim, J.K.;Han, S.H.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.83-86
    • /
    • 2007
  • Turbulent flow analysis is conducted around the multi-stage launch vehicle including base region and detachment motion of strap-on boosters due to resultant aerodynamic forces and gravity is simulated. Aerodynamic solution procedure is coupled with rigid body dynamics for the prediction of separation behavior. An overset mesh technique is adopted to achieve maximum efficiency in simulating relative motion of bodies and various turbulence models are implemented on the flow solver to predict the aerodynamic forces accurately. At first, some preliminary studies are conducted to show the importance of base flow for the exact prediction of detachment motion and to find the most suitable turbulence model for the simulation of launch vehicle configurations. And then, developed solver is applied to the simulation of KSR-III, a three-stage sounding rocket researched in Korea. From the analyses, after-body flow field strongly affects the separation motions of strap-on boosters. Negative pitching moment at initial stage is gradually recovered and a strap-on finally results in a safe separation, while fore-body analysis shows collision phenomena between core rocket and booster. And a slight variation of motion is observed from the comparison between inviscid and turbulent analyses. Change of separation trajectory based on viscous effects is just a few percent and therefore, inviscid analysis is sufficient for the simulation of separation motion if the study is focused only on the movement of strap-ons.

  • PDF

Flow Visualization of Flow Control of the Shock Wave/Turbulent Boundary-Layer Interactions (충격파와 난류 경계층 간섭유동 제어에서의 유동 가시화)

  • Lee,Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제31권7호
    • /
    • pp.32-40
    • /
    • 2003
  • An experimental research has been carried out for flow visualizations of the shock wave/turbulent boundary-layer interaction control utilizing the aeroelastic flaps, Spark shadowgraphs, kerosene-lampblack tracings for the surface streakline pattern, and interference fringe patterns over a thin oil-film applied at the downstream of the shock interactions have been obtained , Effects of variation of the shapes and thicknesses of the flaps are tested, and all the results are compared to the solid-wall reference case without flow-control mechanism , From the qualitative observation of the variation of skin friction utilizing the interference fringe patterns over the silicone oil-film, a strong spanwise variation of the skin friction with a narrow and long region of separation has been noticed near the centerline behind the shock structure, which phenomenon demonstrate a strong three-dimensionality of the shock interaction flows, Influence of the shape of the cavity under the flaps to the shock interaction is also tested, and it is observed that the shape of the cavity is not negligible.

Numerical Analysis of the Effect of Hole Size Change in Lower-Support-Structure-Bottom Plate on the Reactor Core-Inlet Flow-Distribution (하부지지구조물 바닥판 구멍크기 변경이 원자로 노심 입구 유량분포에 미치는 영향에 관한 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Cheong, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제39권11호
    • /
    • pp.905-911
    • /
    • 2015
  • In this study, to examine the effect of a hole size change(smaller hole diameter) in the outer region of the lower-support-structure-bottom plate(LSSBP) on the reactor core-inlet flow-distribution, simulations were conducted with the commercial CFD software, ANSYS CFX R.15. The predicted results were compared with those of the original LSSBP. Through these comparisons, it was concluded that a more uniform distribution of the mass flow rate at the core-inlet plane could be obtained by reducing the hole size in the outer region of the LSSBP. Therefore, from the nuclear regulatory perspective, design change of the hole pattern in the outer region of the LSSBP may be desirable in terms of improving both the mechanical integrity of the fuel assembly and the core thermal margin.

Characteristic of Power Consumption for Paddle Impeller in Various Agitated Vessels (여러 가지 교반조에서 Paddle 임펠러의 교반소요동력 특성)

  • Lee, Young Sei;Kato, Yoshihito
    • Applied Chemistry for Engineering
    • /
    • 제16권5호
    • /
    • pp.698-704
    • /
    • 2005
  • Power consumption for paddle impeller in spherical and cylindrical agitated vessel was measured over a wide range of Reynolds number from laminar to turbulent flow regions. The power correlation was obtained for both spherical and cylindrical vessels, where the apparent diameter of the spherical vessel was equal to the diameter of the cylindrical vessel (height equal to its diameter and had the same volume as the spherical vessel). The power consumption well correlated with the experimental results of Nagata, et al. and Hixson-Baum. Also the critical Reynolds numbers was directly related to the transition coefficient $C_{tr}$ characterizing the transition from a laminar to a turbulent flow region in the correlation proposed here.

Prediction of Turbulent Flow Over L-Shaped Riblet Surfaces with $k-\varepsilon$ Turbulence Models ($k-\varepsilon$ 난류모델에 의한 L-형 리브렛 주위 난류유동 예측)

  • Myeong, Hyeon-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제22권1호
    • /
    • pp.93-103
    • /
    • 1998
  • The paper reports the outcome of a numerical study of flow over idealized L-shaped ribleted surfaces with two-equation turbulence models. In the present study, the Launder and Sharma's k-.epsilon. turbulence model (LS model) is basically N employed, but with a little modification of the additional .epsilon.-source term without affecting its level under 2-dimensional straining in which the term has been calibrated. Compared to the original LS model, the present model has predicted greatly improved drag reduction behavior for this geometry. As a drag reduction mechanism, it is found that the skin-friction in the riblet valleys might be sufficient to overcome the skin-friction increase near the riblet tip. The present predicted results are in good agreement with the recent DN S ones by Choi et al. (1993): differences in the mean velocity prof ile and turbulence quantities are found to be limited to the riblet cavity region. It is also found that turbulent kinetic energy and Reynolds shear stress above the riblets are also reduced in drag-reducing configurations.

On the Viscous Flow Around Breaking Waves Generated by a Submerged Cylinder(Part 2 : Aspects of Viscous Flow) (몰수실린더에 의하여 생성되는 쇄파주의 점성유동의 고찰(제2부: 점성유동특성))

  • B.S. Hyun;Y.H. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제37권1호
    • /
    • pp.91-98
    • /
    • 2000
  • The present paper is Part 2 of three-part paper for an experimental study on breaking waves generated by a submerged cylinder. Measurements of velocity and head loss profiles at the wakes of cylinder and breaker as well as the turbulent intensities in breaking region were made to elucidate the viscous aspects of breaking waves. Their mutual correlation is also investigated. It is found that the head loss profile is an excellent indicator of the strength and extent of breaker. Very high turbulent intensities measured at and just downstream of the breaker indicate the consequence of energy transfer of wave breaking into turbulence.

  • PDF

A study on the flow resistance in the various fittings for non-newtonian fluid (비뉴우튼유체의 관이음음 유동저항에 관한 연구)

  • ;;Kim, Chun Sik
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제3권4호
    • /
    • pp.151-157
    • /
    • 1979
  • An experomental study on drg reduction in the rough tubes is presunted using the drrective drag reducing proymer solutions. The friction factors of the rough tubes follow the maximum drag reduction asymptote for the lower Reynolds numbers in the turbulent flow. However, as the Reynols number is increased the rougher tube results deviate from the maximum drag rduction asymptote sooner than the less rough tube results. There appears a systematic deviation from the maximum drag reduction asymptote depending on the relative roughness just as friction factors for the Newtonian hluid inthe rough tubes exhibit in the turbulent region. The minor loss results inthe various fittings such as elbows, tees, and gate valves are presunted The fittings show higher values of the loss coefficient in the drag reducing polymer solutions than in the Newtonian fluid, which is quite contrary to the drag reduction phenomenon in the straight tubes. The eqivalent length of the fittings for the drag reducing polymer solutions is many times longer than that for Newtonian fluids due to the increase of the loss coefficient and the decrease of the friction factor. It is speculated that the solid-like behavior of the polymer solutions in the abruptly changing folw passage plays a significant role in increasing the loss coefficient.