• 제목/요약/키워드: Turbulent flow damper

검색결과 4건 처리시간 0.017초

점탄성물질 난류댐퍼를 이용한 V형 철골 브레이스 골조의 진동응답해석 (A Vibration Response Analysis of Steel Building Frame with V Shape Brace Vibrationally Controlled by Turbulent Flow Dampers Sealed by Visco-Elastic Material)

  • 이호;이상엽
    • 한국공간구조학회논문집
    • /
    • 제2권3호
    • /
    • pp.103-113
    • /
    • 2002
  • This thesis investigates vibration response characteristics of building frames in which dampers are installed. The frames belong to passively vibration-controlled. Structures which utilizes energy dissipation of mechanical dampers provided in the structure. In this thesis, a turbulent flow damper sealed by visco-elastic material was dealt with as the device of passive vibration control. To investigate the resisting force characteristics of the damper, harmonic vibratration tests were carried out. Based on the test results, a theoretical model of the damper resistance was presented and a method of identifying the model parameters was proposed. Shaking table tests of the frame with and without the dampers were carried out and the effectiveness of the damper was examined. The response of the frame with the dampers was reduced to 1/2 or 1/3 of the cases without the damper.

  • PDF

점탄성물질 난류댐퍼를 이용한 K형 철골 브레이스 골조의 진동응답해석 (A Vibration Response Analysis of Steel Building Frame with K Shape Brace Vibrationally Controlled by Turbulent Flow Dampers sealed by Visco-elastic Material)

  • 이호
    • 한국공간구조학회논문집
    • /
    • 제6권2호
    • /
    • pp.61-68
    • /
    • 2006
  • 본 논문에서는 패시브 진돈제어시스템을 설치한 실대물 K형 철골브레이스 골조의 실험결과를 다루었다. 패시브 진동제어시스템은 점탄성물질을 이용하여 새롭게 개발된 댐퍼를 사용하였다. 이 실험모델의 진동제어 효율성을 확인하고 철골조 브레이싱의 진동반응특성을 조사하기 위하여 일련의 실험을 행하였다. 자유진동실험결과 댐퍼를 설치시 설치하지 않은 경우와 비교하여 3배정도의 진동제어능력을 나타냈다. 점탄성물질 난류댐퍼의 효율성은 진동실험에 의하여 확인되었다.

  • PDF

항공기의 도어 댐퍼용 교축 오리피스의 설계 (Design of Throttle Orifices for an Aircraft Door Damper)

  • 권용철;김종혁;홍예선;김상범
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권3호
    • /
    • pp.23-28
    • /
    • 2012
  • In this study the flow rate-to-pressure difference characteristics of short-tube type damping orifices for an aircraft door damper were investigated by CFD analyses and experiments. As the design parameters of the damping orifice its diameter, inlet and outlet angle, tube length and the viscosity of the working fluid were taken into consideration. The results showed that the discharge coefficient of the orifices are dependant on the inlet and outlet angle and the oil viscosity, while their length plays an little significant role. Although the short-tube type damping orifice was employed to induce a turbulent flow, their discharge coefficient decreases rapidly as the oil viscosity gets higher than 50mm2/s. Therefore, in order to determine the orifice size, satisfying the working temperature range of the door damper, the oil viscosity as well as the friction force on the damper piston should be kept within proper values. For the verification of the CFD analysis results the actual performance of a door damper was measured and compared with them.

Wind tunnel investigation on flutter and buffeting of a three-tower suspension bridge

  • Zhang, Wen-ming;Ge, Yao-jun
    • Wind and Structures
    • /
    • 제24권4호
    • /
    • pp.367-384
    • /
    • 2017
  • The Maanshan Bridge over Yangtze River in China is a new long-span suspension bridge with double main spans of $2{\times}1080m$ and a closed streamline cross-section of single box deck. The flutter and buffeting performances were investigated via wind tunnel tests of a full bridge aeroelastic model at a geometric scale of 1:211. The tests were conducted in both smooth wind and simulated boundary layer wind fields. Emphasis is placed on studying the interference effect of adjacent span via installing a wind deflector and a wind separating board to shelter one span of the bridge model from incoming flow. Issues related to effects of mid-tower stiffness and deck supporting conditions are also discussed. The testing results show that flutter critical wind velocities in smooth flow, with a wind deflector, are remarkably lower than those without. In turbulent wind, torsional and vertical standard deviations for the deck responses at midspan in testing cases without wind deflector are generally less than those at the midspan exposed to wind in testing cases with wind deflector, respectively. When double main spans are exposed to turbulent wind, the existence of either span is a mass damper to the other. Furthermore, both effects of mid-tower stiffness and deck supporting conditions at the middle tower on the flutter and buffeting performances of the Maanshan Bridge are unremarkable.