• Title/Summary/Keyword: Turbulent Water Flow

Search Result 382, Processing Time 0.028 seconds

Melting Heat Transfer Characteristics of Plural Phase Change Microcapsules Slurry Having Different Diameters

  • Kim, Myoung-Jun;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1225-1238
    • /
    • 2004
  • The present study has been performed for obtaining the melting heat transfer enhancement characteristics of water mixture slurries of plural microcapsules having different diameters encapsulated with solid-liquid phase change material(PCM) flowing in a pipe heated under a constant wall heat flux condition. In the turbulent flow region, the friction factor of the present PCM slurry was to be lower than that of only water flow due to the drag reducing effect of the PCM slurry. The heat transfer coefficient of the PCM slurry flow in the pipe was increased by both effects of latent heat involved in phase change process and microconvection around plural microcapsules with different diameters. The experimental results revealed that the average heat transfer coefficient of the PCM slurry flow was about 2~2.8 times greater than that of a single phase of water.

2D Numerical Simulations of Bubble Flow in Straight Pipes (직관내 기포의 흐름에 대한 2차원 수치 모의)

  • Lee, Tae Yoon;Nguyen, Van Thinh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.386-390
    • /
    • 2016
  • Water aeration is an effective water treatment process, which involves the injection of air or air-water mixture into water treatment reservoir commonly through pipes. The main purpose of water aeration is to maintain healthy levels of dissolved oxygen (DO), which is the most important water quality factor. The pipes' operating conditions are important for controlling the efficiency and effectiveness of aeration process. Many studies have been conducted on two-phase flows in pipes, however, there are a few studies to deal with small s ale in millimeter. The main objective of this study is to perform 2-dimensional two-phase simulations inside various straight pipes using the computational fluid dynamic (CFD) OpenFOAM (Open source Field Operation And Manipulation) tools to examine the influence of flow patterns on bubble size, which is closely related to DO concentration in a water body. The both flow regimes, laminar and turbulence, have been considered in this study. For turbulence, Reynolds-averaged Navier-Stokes (RANS) has been applied. The coalescence and breakage of bubbles caused by random collisions and turbulent eddies, respectively, are considered in this research. Sauter mean bubble diameter and water velocity are compared against experimental data. The simulation results are in good agreement with the experimental measurements.

  • PDF

Numerical Study for Development of Submerged Seawater Lift Pump (심정용 해수펌프 개발을 위한 수치해석 연구)

  • Kim, Young-Ju;Kim, Young-Hun;Woo, Nam-Sub;Kwon, Jae-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.21-26
    • /
    • 2011
  • Seawater lift pump systems are responsible for maintaining open canal levels to provide the suction flow of circulating water pumps at the set point. The objective of this paper is to design a 2-stage mixed flow pump (for seawater lifting), investigate the new impeller modeling method, and performance improvements of the impeller by using a commercial CFD code. The rotating speed of the impeller is 1,750 rpm with a flow rate of 2,700 m3/h. A finite volume method with a structured mesh and realized k-${\varepsilon}$ turbulent model is used to guarantee a more accurate prediction of turbulent flow in the pump impeller. The performance variables such as the static head, brake horsepower, and efficiency of the mixed flow pump are compared based on changes in the impeller blade shape.

Influence of Local Ultrasonic Forcing on a Turbulent Boundary Layer (국소적 초음파 가진이 난류경계층에 미치는 영향)

  • Park Young Soo;Sung Hyung Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.78-89
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. Stereoscopic particle image velocimetry (SPIV) was used to probe the characteristics of the flow. A ultrasonic forcing system was made by adhering six ultrasonic transducers to the local flat plate. Cavitation which generates uncountable minute air-bubbles having fast wall normal velocity occurs when ultrasonic was projected into water. The SPIV results showed that the wall normal mean velocity is increased in a boundary layer dramatically and the streamwise mean velocity is reduced. The skin friction coefficient (C$_{f}$) decreases 60$\%$and gradually recovers at the downstream. The ultrasonic forcing reduces wall-region streamwise turbulent intensity, however, streamwise turbulent intensity is increased away from the wall. Wall-normal turbulent intensity is almost the same near the wall but it increases away from the wall. In the vicinity of the wall, Reynold shear stress, sweep strength and production of turbulent kinetic energy were decreased. This suggests that the streamwise vortical structures are lifted by ultrasonic forcing and then skin friction is reduced.

  • PDF

Review of Experimental Studies on Swirling Flow in the Circular Tube using PIV Technique

  • Chang, Tae-Hyun;Nah, Do-Baek;Kim, Sang-Woo
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • The study of swirling flow is of technical and scientific interest because it has an internal recirculation field, and its tangential velocity is related to the curvature of streamline. The fluid flow for tubes and elbow of heat exchangers has been studied largely through experiments and numerical methods, but studies about swirling flow have been insufficient. Using the particle image velocimetry(PTV) method, this study found the time averaged velocity distribution with swirl and without swirl along longitude sections and the results appear to be physically reasonable. In addition, streamwise mean velocity distribution was compares with that of other. Furthermore, other experimental investigation was performed to study the characteristics of turbulent water flow in a horizontal circular tube by using liquid crystal. 2D PIV technique is employed for velocity measurement and liquid crystal is used for heat transfer experiments in water. Temperature visualization was made quantitatively by calibrating the colour of the liquid crystal versus temperature using various approaches.

Experimental Studies on Heat Transfer in the Annuli with Corrugated Inner Tubes

  • Ahn, Soo-Whan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1226-1233
    • /
    • 2003
  • Experimental heat transfer data for single-phase water flow in the annuli with corrugated inner tubes are presented. In the annuli with parallel flow, ten different annular arrangements are considered. For water flow rate in 1,700${\gamma}$$\^$*/). As P/e becomes closer to 8 in the range below the radius ratio (${\gamma}$$\^$*/) of 0.5, Nusselt numbers increase. However, Nusselt numbers decrease in the range above the radius ratio (${\gamma}$$\^$*/) of 0.5 because flow reattachment position becomes farther in the narrower clearance.

Free Surface Flow in a Trench Channel Using 3-D Finite Volume Method

  • Lee, Kil-Seong;Park, Ki-Doo;Oh, Jin-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.429-438
    • /
    • 2011
  • In order to simulate a free surface flow in a trench channel, a three-dimensional incompressible unsteady Reynolds-averaged Navier-Stokes (RANS) equations are closed with the ${\kappa}-{\epsilon}$ model. The artificial compressibility (AC) method is used. Because the pressure fields can be coupled directly with the velocity fields, the incompressible Navier-Stokes (INS) equations can be solved for the unknown variables such as velocity components and pressure. The governing equations are discretized in a conservation form using a second order accurate finite volume method on non-staggered grids. In order to prevent the oscillatory behavior of computed solutions known as odd-even decoupling, an artificial dissipation using the flux-difference splitting upwind scheme is applied. To enhance the efficiency and robustness of the numerical algorithm, the implicit method of the Beam and Warming method is employed. The treatment of the free surface, so-called interface-tracking method, is proposed using the free surface evolution equation and the kinematic free surface boundary conditions at the free surface instead of the dynamic free surface boundary condition. AC method in this paper can be applied only to the hydrodynamic pressure using the decomposition into hydrostatic pressure and hydrodynamic pressure components. In this study, the boundary-fitted grids are used and advanced each time the free surface moved. The accuracy of our RANS solver is compared with the laboratory experimental and numerical data for a fully turbulent shallow-water trench flow. The algorithm yields practically identical velocity profiles that are in good overall agreement with the laboratory experimental measurement for the turbulent flow.

Numerical Modeling of Wave-Type Flow on a Stepped Weir (계산형 위어에서의 파형흐름 수치모의)

  • Paik, Joongcheol;Kang, Joon Gu;Lee, Nam-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.65-65
    • /
    • 2016
  • Various types of flow conditions are developed in the region just downstream of hydraulic structures such as weir and drop structures. One of distinct flow conditions occurred downstream of drop structures is the wave type flow with undular hydraulic jump formation. We present three-dimensional numerical simulations of a wave type flow formed downstream of a stepped weir which were experimentally investigated by Kang et al. (2010). The turbulent flow over the weir structure is modeling using the unsteady Reynolds-averaged Navier-Stokes (URANS) simulation employing the Spalart-Allmaras one equation model and the detached eddy simulation. Numerical modeling and the performance of turbulence modeling approaches are evaluated by comparing with the experimental measurements in terms of the free surface variation, the shapes and sizes of undular wave, roller near at free surface, recirculation zone near the channel bottom downstream of the structures, and streamwise velocity profiles at selected longitudinal locations.

  • PDF

Computational Investigation of Turbulent Swirling Flows in Gas Turbine Combustors

  • Benim, A.C.;Escudier, M.P.;Stopford, P.J.;Buchanan, E.;Syed, K.J.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In the first part of the paper, Computational Fluid Dynamics analysis of the combusting flow within a high-swirl lean premixed gas turbine combustor and over the $1^{st}$ row nozzle guide vanes is presented. In this analysis, the focus of the investigation is the fluid dynamics at the combustor/turbine interface and its impact on the turbine. The predictions show the existence of a highly-rotating vortex core in the combustor, which is in strong interaction with the turbine nozzle guide vanes. This has been observed to be in agreement with the temperature indicated by thermal paint observations. The results suggest that swirling flow vortex core transition phenomena play a very important role in gas turbine combustors with modern lean-premixed dry low emissions technology. As the predictability of vortex core transition phenomena has not yet been investigated sufficiently, a fundamental validation study has been initiated, with the aim of validating the predictive capability of currently-available modelling procedures for turbulent swirling flows near the sub/supercritical vortex core transition. In the second part of the paper, results are presented which analyse such transitional turbulent swirling flows in two different laboratory water test rigs. It has been observed that turbulent swirling flows of interest are dominated by low-frequency transient motion of coherent structures, which cannot be adequately simulated within the framework of steady-state RANS turbulence modelling approaches. It has been found that useful results can be obtained only by modelling strategies which resolve the three-dimensional, transient motion of coherent structures, and do not assume a scalar turbulent viscosity at all scales. These models include RSM based URANS procedures as well as LES and DES approaches.

Effects of the free Stream Turbulence Intensity on the Flow Over an Axisymmetric Backward-Facing Step (축대칭 하향단흐름에서 자유흐름 난류강도의 영향)

  • 양종필;김경천;부정숙
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2328-2341
    • /
    • 1995
  • An experimental study on the flow over the axisymmetric backward-facing step was carried out. The purposes of the present study are to investigate the effect of the free stream turbulence intensity on the reattachment length and to understand the turbulence structure of the recirculating flows. Local mean and fluctuating velocity components were measured in the separated and reattaching axisymmetric turbulent boundary layer over the wall of convex cylinder placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. As the free stream turbulence intensity increased, the reattachment length became shorter due to the enhanced mixing in the separated shear layer. It was also observed that the reverse flow velocity and turbulent kinetic energy increase with increasing free stream turbulence intensity. Spectral data and flow visualization showed that low-frequency motions occur in the separated flow behind a backward-facing step. These motions have a significant effect on the time-averaged turbulence data.