• 제목/요약/키워드: Turbulent Structure

검색결과 575건 처리시간 0.028초

대향 제트 정체점 주변의 난류 화염에 관한 연구 (An Experimental Study on Turbulent Counter Jet Flame near Stagnation Point)

  • 고일민;서정일;홍정구;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.128-134
    • /
    • 2006
  • A characterization of turbulent reacting flows has proved difficult owing to the complex interaction between turbulence, mixing, and combustion chemistry. There are many types of time scales in turbulent flame which can determine flame structure. This counter jet type premixed burner produces high intensity turbulence. The goal is to gain better insights into the flame structures at high turbulence. 6 propane/air flames gave been studied with high velocity fluctuation in bundle type nozzle and in one hole type nozzle. By measuring velocity fluctuation, turbulent intensity and integral length scale are obtained. And sets of OH LIF images were processed to see flame structure of the mean flame curvatures and flame lengths for comparison with turbulence intensity and turbulent length scales. The results show that the decrease in nozzle size generates smaller flow eddy and mean curvatures of the flame fronts, and a decrease in Damkohler number estimated from flow time scale measurement.

  • PDF

예혼합 난류화염구조에 미치는 레이놀즈 수와 담퀠러 수의 영향에 관한 연구 (A Study on the Effects of Reynolds Number and Damkohler Number in the Structure of Premixed Turbulent Flames)

  • 김준효;안수길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권4호
    • /
    • pp.34-41
    • /
    • 1995
  • The structure of premixed tubulent flames in a constant-volume vessel was investigated using a schlieren method and microprobe method. The schlieren method was used to observe the flame structure qualitatively. The microprobe method, which detects a flamelet by detecting its flame potential signal, was used to investigate the deeper flame structure behind the flame front. The flame potential signal having one to six peaks was obtained in the case of turbulent flames, each of them being regarede as a flamelet existing in the flame zone. Based on this consideration, the flame propagation speed, the thickness of the flame zone, the number of flamelets and the separation distance between adjacent flamelets in the flame zone were measured. Moreover, the thickness of flamelet which could not be attempted in the conventional electrostatic probe method was also investigated. The experimental results of this work suggest the existence of "reactant islands" in the reaction zone, and show that the averaged number of flamelets increases with an increase in the turbulence intensity and/or a decrease in the Damkohler number. The mean thickness of flamelet in the case of turbulent flames was found to be about two times compared to laminar values.ar values.

  • PDF

비정상 후류가 난류박리기포의 응집구조에 미치는 영향 (Large-Scale Vortical Structure of Turbulent Separation Bubble Affected by Unsteady Wake)

  • 전세종;성형진
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1218-1225
    • /
    • 2002
  • Large-scale vortical structure of a turbulent separation bubble affected by unsteady wake is essential to understand flow mechanisms in various fluid devices. A spoked-wheel type of wake generator provides unsteady wake, which modifies the turbulent separation bubble significantly by changing rotation directions and passing frequencies. A detailed mechanism of vortex shedding from the separation bubble with unsteady wake is analyzed by taking a conditional average with spatial box filtering, which spatially integrates measured signals at pre-determined wavelength. A convecting nature of the large-scale vortical structure is analyzed carefully. Spatial evolution of the large-scale vortical structure with frequency variance is also exemplified.

미세 Riblet 평판에서의 난류구조 변화에 관한 실험적 연구 (Experimental Study on Turbulent Structure of Flow over a Micro Riblet Plate)

  • 최용석;이상준
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.375-376
    • /
    • 2006
  • Turbulent structure of a boundary-layer over a flat plate coated with micro riblet film(MRF) has been investigated experimentally. The turbulent structure was visualized using a dynamic particle image velocimetry (Dynamic PIV) system. We identified the vortex structures from 2-D velocity field data by applying the complex eigenvalue definition. The velocity field images acquired by using the complex eigenvalue definition showed the whole 2-D vortex structures clearly. In addition, the spatial distributions of small-scale vortices as well as large-scale vortices were obtained with high accuracy. The difference of vortex structures between the MRF coated flat plate and the smooth flat plate was analysed in detail. With varying upstream flow speed, the characteristics of vortex structure over the MRF coated flate plate was compared with those over the smooth flat plate.

  • PDF

CMC 모델을 이용한 난류 비예혼합 Syngas 화염장 해석 (Fully coulpled CMC modeling for three-dimensional turbulent nonpremixed syngas flame)

  • 김군홍;이정원;김용모;안국영
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.111-120
    • /
    • 2006
  • The fully coupled conditional moment closure(CMC) model has been developed to realistically simulate the structure of complex turbulent nonpremixed syngas flame, in which the flame structure could be considerablyl influenced by the turbulence, transport history, and heat transfer as well. In order to correctly account for the transport effect, the CMC transport equations fully coupled with the flow and mixing fields are numerically solved. The present CMC approach has successfully demonstrated the capability to realistically predict the detailed structure and the overall combustion characteristics. The numerical results obtained in this study clearly reveal the importance of the convective and radiative heat transfer in the precise structure and NOx emission of the present confined combustor with a cooling wall.

  • PDF

난류 경계층 모델을 고려한 AGARD 445.6 날개의 플러터 해석 및 실험결과 비교 (Comparison Study of Viscous Flutter Boundary for the AGARD 445.6 Wing Using Different Turbulent Boundary Layer Models)

  • 김요한;김동현;김동만;김수현
    • 한국군사과학기술학회지
    • /
    • 제12권6호
    • /
    • pp.704-710
    • /
    • 2009
  • In this study, a comparison study of flutter analysis for the AGARD 445.6 wing with wind turnnel test data has been conducted in the subsonic, transonic and supersonic flow regions. Nonlinear aeroelastic using FSIPRO3D which is a generalized user-friendly fluid-structure analyses have been conducted for a 3D wing configuration considering shockwave and turbulent viscosity effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structure dynamics(CSD), finite element method(FEM) and computations fluid dynamics(CFD) in the time domain. MSC/NASTRAN is used for the vibration analysis of a wing model, and then the result is applied to the FSIPRO3D module. the results for dynamic aeroelastic response using different turbulent models are presented for several Mach numbers. Calculated flutter boundary are compared with the wind-tunnel experimental and the results show very good agreements.

안쪽 실린더가 회전하는 동심 환형관 내 난류 유동의 대형와 모사 (Large-Eddy Simulation of Turbulent Flow in a Concentric Annulus with Rotation of the Inner Cylinder)

  • 정서윤;성형진
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.467-474
    • /
    • 2004
  • A large-eddy simulation is performed for turbulent flow in a concentric annulus with the inner wall rotation at Re$\sub$Dh/=8900 for three rotation rates N=0.2145, 0.429 and 0.858. Main emphasis is placed on the inner wall rotation effect on near-wall turbulent structures. Near-wall turbulent structures close to the inner wall are scrutinized by computing the lower-order statistics. The anisotropy invariant map for the Reynolds stress tensor and the invariant function are illustrated to reveal the altered anisotropy in turbulent structure. Probability density functions of the splat/anti-splat process are explored to develop a sufficiently complete picture of the contributions of the flow events to turbulent production. The present numerical results show that the altered turbulent structures may be attributed to the centrifugal instability, which leads to the augmentation of sweep and ejection events.

난류 화염 구조 규명을 위한 조건 평균 측정법 (Conditional Sampling Measurement to Identify Flame Structures in Turbulent Combustion)

  • 허강열
    • 한국가시화정보학회지
    • /
    • 제2권1호
    • /
    • pp.8-11
    • /
    • 2004
  • Conditional sampling measurement is required for conditional averages as well as unconditional Favre averages to resolve different flame structures of turbulent combustion. A Favre average can be obtained as an integral of conditional average and Favre PDF in terms of the mixture fraction, which is a preferred choice as a sampling variable in diffusion controlled turbulent combustion. MILD combustion data are presented as an example for a conditionally averaged data set and comparison with CMC calculation results.

  • PDF

레이놀즈 응력모델을 이용한 압력구배가 있는 난류경계층의 유동장 해석 (Numerical analysis of a turbulent boundary layer with pressure gradient using Reynolds-transport turbulence model)

  • 이성혁;유홍선;최영기
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.280-293
    • /
    • 1998
  • Numerical study on turbulent and mean structures of a turbulent boundary layer with longitudinal and spanwise pressure gradient is carried out by using Reynolds-stress-model (RSM). The existence of pressure gradient in a turbulent boundary layer causes the skewing or divergence of rates of strain, which contributes to production of turbulent kinetic energy. Also, this augmentation of production due to extra rates of strain can increase the turbulent mixing and cause the anisotropy of turbulent intensities in the outer layer. This paper uses the Reynolds Stress Model to capture anisotropy of turbulent structures effectively and is devoted to compare the results computed by using RSM and the standard k-.epsilon. model with experimental data. It is concluded that the RSM can produce the more accurate predictions for capturing the anisotropy of turbulent structure than the standard k-.epsilon. model.