• 제목/요약/키워드: Turbulent Richardson Number

검색결과 16건 처리시간 0.024초

Modelling the Leipzig Wind Profile with a (k-ε) model

  • Hiraoka, H.
    • Wind and Structures
    • /
    • 제4권6호
    • /
    • pp.469-480
    • /
    • 2001
  • The Leipzig Wind Profile is generally known as a typical neutral planetary boundary layer flow. But it became clear from the present research that it was not completely neutral but weakly stable. We examined whether we could simulate the Leipzig Wind Profile by using a ($k-{\varepsilon}$) turbulence model including the equation of potential temperature. By solving analytically the Second Moment Closure Model under the assumption of local equilibrium and under the condition of a stratified flow, we expressed the turbulent diffusion coefficients (both momentum and thermal) as functions of flux Richardson number. Our ($k-{\varepsilon}$) turbulence model which included the equation of potential temperature and the turbulent diffusion coefficients varying with flux Richardson number reproduced the Leipzig Wind Profile.

점착성, 비점착성 부유사 모형에 대한 Schmidt 수의 영향 (Effect of Schmidt Number on Cohesive and Non-cohesive Sediment Suspension Modeling)

  • 변지선;손민우
    • 한국수자원학회논문집
    • /
    • 제47권8호
    • /
    • pp.703-715
    • /
    • 2014
  • 본 연구는 Schmidt 수(${\sigma}_c$)에 따른 부유사의 부유 거동 변화 및 흐름 특성의 변화를 살펴본 후, 그에 따라 계산된 성층 흐름의 척도가 되는 Flux Richardson 수($Ri_f$)와 Gradient Richardson 수($Ri_g$)를 근거로 타당한 ${\sigma}_c$의 범위를 산정하는 것을 목적으로 수행되었다. 부유사의 종류를 점착성 유사와 비점착성 유사로 구분하였으며 진동 흐름과 흐름 조건을 가정하고 1차원 연직 수치 모형을 이용하여 수치 실험을 수행하였다. 이 과정에서 ${\sigma}_c$가 난류 감소효과와 관계되는 상수인 것에 근거하여 부유사의 존재로 인한 난류 감소효과 고려 여부에 따른 흐름 특성의 변화를 살펴보았다. 그 결과, 흐름 조건에 관계없이 ${\sigma}_c$의 크기에 따라 부유 거동이 일관된 경향을 나타내는 것이 확인 되었으며 난류 감소효과를 고려하지 않는 경우 유속 및 난류 에너지가 과대 산정 되는 결과가 나타났다. 부유로 인한 성층화 조건을 형성하는 $Ri_f$$Ri_g$의 범위에 기초하여 결과를 분석하고 ${\sigma}_c$가 0.3에서 0.5의 범위에 해당될 때 성층 흐름 내 유사의 수직 혼합이 유효하게 계산된다는 결론이 도출되었다.

Large eddy simulation of turbulent boundary layer effects on stratified fluids in a rotating conical container

  • Lee, Sang-Ki;Bae, Jun-Hong;Hwang, Eyl-Seon;M. Sadasivam
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.75-80
    • /
    • 2000
  • We revisit the arrested Ekman boundary layer problem, using a fully non-linear numerical model with the subgrid dissipation modeled by the large eddy simulation method (LES). The main objective of this study is to find out whether the dynamic balance of the arrested Ekman boundary layer explained by MacCready and Rhines (1991) is valid for high Reynolds number. The model solution indicates that for high Reynolds number and low Richardson number flows, the density anomaly diffusion by near-wall turbulent action may become intense enough to homogenize completely the density structure within the boundary layer, in the direction perpendicular to the sloping wall. Then the buoyancy effect becomes negligible allowing a near-equilibrium Ekman boundary layer flow to persist for a long period.

  • PDF

비정상 열확산 현상 의 실험적 연구 (Experimental study of unsteady thermally stratified flow)

  • 이상준;정명균
    • 대한기계학회논문집
    • /
    • 제9권6호
    • /
    • pp.767-776
    • /
    • 1985
  • 본 연구에서는 초기 조건(입구 R$_{i}$수)의 변화에 따른 속도 분포, 온도 분 포, 확산율, 계면의 변화등을 연구하며, 난류 혼합과 계면의 불안정에 기인한 속도장 과 온도장의 변화과정을 가시화 사진과 비교 분석한다.다.

타원 방정식을 사용하는 2차모멘트 모형에 의한 성층된 난류 평판유동의 예측 (Prediction of Stratified Turbulent Channel Flows with an Second Moment Model Using the Elliptic Equations)

  • 신종근
    • 설비공학논문집
    • /
    • 제19권12호
    • /
    • pp.831-841
    • /
    • 2007
  • This work is to extend the elliptic operator, which has been already adopted in turbulent stress model, to fully developed turbulent buoyant channel flows with changing the orientation of the buoyancy vector to be perpendicular to the channel walls. The turbulent heat flux models based on the elliptic concept are employed and closely linked to the elliptic blending second moment closure which is used for the prediction of Reynolds stresses. In order to reflect the stable or unstable stratification conditions, the present model introduces the gradient Richardson number into the thermal to mechanical time scale ratio and model coefficients. The present model has been applied for the computation of stably and unstably stratified turbulent channel flows and the prediction results are directly compared to the DNS data.

점착성 및 비점착성 유사의 밀도성층화에 따른 난류 영향에 대한 수치연구 (A Numerical Study on Turbulent Damping Effect due to Density Stratification of Cohesive and Noncohesive Sediment)

  • 손민우;이관홍;이두한
    • 생태와환경
    • /
    • 제44권1호
    • /
    • pp.66-74
    • /
    • 2011
  • This numerical study aims to investigate the effect of cohesive sediment on turbulence structure due to density stratification. The transport model for cohesive sediment incorporated with flocculation model has been selected and calculates the concentration, fluid momentum, and turbulence. From the model results, it is known that suspension of sediment decreases turbulence intensity. It is also found that cohesive sediment has a relatively weak effect on turbulence damping compared to noncohesive sediment. The low settling velocity and more suspension of cohesive sediment are considered to be mechanisms of this behavior. Richardson number determined with results of this study quantitatively shows that cohesive sediment causes less stable density stratification condition and, as a result, the turbulence structure is less damped compared to the case of noncohesive sediment.

이차적인 변형률효과를 나타내는 새로운 변수의 제안 (Proposal of a New Parameter for Extra Straining Effects)

  • 명현국
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.184-192
    • /
    • 1994
  • The parameters such as Richardson numbers or stability parameters are widely used to account for the extra straining effects due to three-dimensionality, curvature, rotation, swirl and others arising in paractical complex flows. Existing expressions for the extra strain in turbulence models such as $k-{\epsilon}$ models, however, do not satisfy the tensor invariant condition representing the coordinate indifference. In the present paper, considering the characteristics of both the mean strain rate and the mean vorticity, a new parameter to deal with the extra straining effects is proposed. The new parameter has a simple form and satisfies the tensor invariant condition. A semi-quantitative analysis between the present and previous parameters for several typical complex flows suggests that the newly proposed parameter is more general and adequate in representing the extra straining effects than the previous ad-hoc parameters.

The relevance of turbulent mixing in estuarine numerical models for two-layer shallow water flow

  • Krvavica, Nino;Kozar, Ivica;Ozanic, Nevenka
    • Coupled systems mechanics
    • /
    • 제7권1호
    • /
    • pp.95-109
    • /
    • 2018
  • The relevance of turbulent mixing in estuarine numerical models for stratified two-layer shallow water flows is analysed in this paper. A one-dimensional numerical model was developed for this purpose by extending an immiscible two-layer model with an additional source term, which accounts for turbulent mixing effects, namely the entrainment of fluid from the lower to the upper layer. The entrainment rate is quantified by an empirical equation as a function of the bulk Richardson number. A finite volume method based on an approximated Roe solver was used to solve the governing coupled system of partial differential equations. A comparison of numerical results with and without entrainment is presented to illustrate the influence of entrainment on both the salt-water intrusion length and lower layer dynamics. Furthermore, one example is given to demonstrate how entrainment terms may help to stabilize the numerical scheme and prevent a possible loss of hyperbolicity. Finally, the model with entrainment is validated by comparing the numerical results to field measurements.

수정 난류모델에 의한 후향계단 유동예측 (Prediction of a Backward-Facing Step Flow with Modified Turbulence Models)

  • 명현국;백인철;한화택
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.3039-3045
    • /
    • 1994
  • The k-$\varepsilon$ turbulence models by Launder et al.(1977, LPS) and Leschziner and Rodi(1981, LR) are modified to account for the secondary straining effect with having a generality in the present paper. The modified models are obtained by replacing the gradient Richardson number used to account for the secondary straining effect in the original models by a new parameter with a tensor-invariant correction form. These two modified models are used to predict the turbulent flow over a backward-facing step. In contrast to both standard and modified LR models, the modified LPS model is found to predict the reattachment point fairy well, as well as mean velocity, wall static pressure, turbulent kinetic energy and Reynolds shear stress in the recirculating region.

회전하는 회전체 주위의 축대칭 두꺼운 난류경계층 연구 (Axisymmetric Thick Turbulent Boundary Layer Around a Rotating Body of Revolution)

  • 강신형;황정호
    • 대한조선학회지
    • /
    • 제23권1호
    • /
    • pp.13-22
    • /
    • 1986
  • Axisymmetric turbulent thick boundary layers on a rotating body of revolution are calculated numerically in the paper. Richardson number is introduced to the mixing length to take account of swirl effects on Reynolds stresses. Interactions of the boundary layer and the external potential flow are included by adding the displacement thickness of boundary layers on the original body. Pressure distributions on the body surface are estimated by integrating normal momentum equation across the boundary layer. A model is designed and tested in the wind tunnel. Mean velocities are measured. Through the present study, swirl effects on the thick axisymmetric boundary layer development are considerable in comparison with those of non-totating cases. Rotational motion generally increase boundary layer thickness, axial skin friction coefficients, and form drags. Circumferential flow can be reversed to induce negative skin friction when the section area is reduced.

  • PDF