Axisymmetric Thick Turbulent Boundary Layer Around a Rotating Body of Revolution

회전하는 회전체 주위의 축대칭 두꺼운 난류경계층 연구

  • Published : 1986.03.01

Abstract

Axisymmetric turbulent thick boundary layers on a rotating body of revolution are calculated numerically in the paper. Richardson number is introduced to the mixing length to take account of swirl effects on Reynolds stresses. Interactions of the boundary layer and the external potential flow are included by adding the displacement thickness of boundary layers on the original body. Pressure distributions on the body surface are estimated by integrating normal momentum equation across the boundary layer. A model is designed and tested in the wind tunnel. Mean velocities are measured. Through the present study, swirl effects on the thick axisymmetric boundary layer development are considerable in comparison with those of non-totating cases. Rotational motion generally increase boundary layer thickness, axial skin friction coefficients, and form drags. Circumferential flow can be reversed to induce negative skin friction when the section area is reduced.

Keywords