• Title/Summary/Keyword: Turbulent Flows

Search Result 739, Processing Time 0.023 seconds

Numerical Analysis of Cryogenic Liquid Nitrogen Jets at Supercritical Pressures using Multi-Environment Probability Density Function approach (다점 확률분포 모델을 이용한 초임계 압력 액체질소 제트 해석)

  • Jung, Kiyoung;Kim, Namsu;Kim, Yongmo
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.137-145
    • /
    • 2017
  • This paper describes numerical modeling of transcritical and supercritical fluid flows within a liquid propellant rocket engine. In the present paper, turbulence is modeled by standard $k-{\varepsilon}$ model. A conserved scalar approach in conjunction with multi-environment probability density function model is used to account for the turbulent mixing of real-fluids in the transcritical and supercritical region. The two real-fluid equations of state and dense-fluid correction schemes for mixtures are used to construct thermodynamic data library based on the conserved scalar. In this study, calculations are made on two cryogenic nitrogen jets under different chamber pressures. Sensitivity analysis for two different real-fluid equations of sate is particularly emphasized. Based on numerical results, precise structures of cryogenic nitrogen jets are discussed in detail. Numerical results show that the current real-fluid model can predict the essential features of the cryogenic liquid nitrogen jets.

Dispersal of Molecular Clouds by UV Radiation Feedback from Massive Stars

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.38.1-38.1
    • /
    • 2017
  • We report the results of three-dimensional radiation hydrodynamic simulations of star cluster formation in turbulent molecular clouds, with primary attention to how stellar radiation feedback controls the lifetime and net star formation efficiency (SFE) of their natal clouds. We examine the combined effects of photoionization and radiation pressure for a wide range of cloud masses (10^4 - 10^6 Msun) and radii (2 - 80 pc). In all simulations, stars form in densest regions of filaments until feedback becomes strong enough to clear the remaining gas out of the system. We find that the SFE is primarily a function of the initial cloud surface density, Sigma, (SFE increasing from ~7% to ~50% as Sigma increases from ~30 Msun/pc^2 to ~10^3 Msun/pc^2), with weak dependence on the initial cloud mass. Control runs with the same initial conditions but without either radiation pressure or photoionization show that photoionization is the dominant feedback mechanism for clouds typical in normal disk galaxies, while they are equally important for more dense, compact clouds. For low-Sigma clouds, more than 80% of the initial cloud mass is lost by photoevaporation flows off the surface of dense clumps. The cloud becomes unbound within ~0.5-2.5 initial free-fall times after the first star-formation event, implying that cloud dispersal is rapid once massive star formation takes place. We briefly discuss implications and limitations of our work in relation to observations.

  • PDF

The impact of ram pressure on the multi-phase ISM probed by the TIGRESS simulation

  • Choi, Woorak;Kim, Chang-Goo;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.62.1-62.1
    • /
    • 2018
  • Galaxies in the cluster environment interact with the intracluster medium (ICM), losing the interstellar medium (ISM) and alternating their evolution. Observational evidences of the extraplanar ISM stripped by the ICM's ram pressure are prevalent in HI imaging studies of cluster galaxies. However, current theoretical understanding of the ram pressure stripping (or ICM-ISM interaction in general) is still limited mainly due to the lack of numerical resolution at ISM scales in large-scale simulations. Especially, self-consistent modeling of the turbulent, multiphase ISM is critical to understand star formation in galaxies interacting with the ICM. To achieve this goal, we utilize the TIGRESS simulation suite, simulating a local patch of galactic disks with high resolution to resolve key physical processes in the ISM, including cooling/heating, self-gravity, MHD, star formation, and supernova feedback. We then expose the ISM disk to ICM flows and investigate the evolution of star formation rate and the properties of the ISM. By exploring ICM parameter space, we discuss an implication of the simple ram pressure stripping condition (so called the Gunn-Gott condition) to the realistic ISM.

  • PDF

Analysis of the flow field around an automobile with Chimera grid technique (Chimera 격자기법을 이용한 자동차 주위의 유동장 해석)

  • An, Min-Gi;Park, Won-Gyu
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.39-51
    • /
    • 1998
  • This paper describes the analysis of flow field around an automobile. The governing equations of the 3-D unsteady incompressible Navier-Stokes equations are solved by the iterative time marching scheme. The Chimera grid technique has been applied to efficiently simulate the flow around the side-view mirror. To validate the capability of simulating the flow around a ground vehicle, the flows around the Ahmed body with 12.5$^{\circ}$ and 30$^{\circ}$ of slant angles are simulated and good agreements with experiment and other numerical results are achieved. To validate Chimera grid technique, the flow field around a cylinder was also calculated. The computed results are also well agreed with other numerical results and experiment. After code validations, the flow phenomena around the ground vehicle are evidently shown. The flow around the side-view mirror is also well simulated using the Chimera grid technique.

  • PDF

Stereoscopic PIV Measurement on Turbulent Flows in a Waterjet Intake Duct (스테레오 PIV를 이용한 워터젯 흡입덕트 내부의 난류유동측정)

  • Kwon, Seong-Hun;Yoon, Sang-Youl;Chun, Ho-Hwan;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.612-618
    • /
    • 2004
  • Stereoscopic PIV measurements were made in the wind tunnel with the actual size waterjet model. The main wind tunnel provides the vehicle velocity while the secondary wind tunnel adjusts the jet issuing velocity. Experiments were performed at the range of jet to vehicle velocity ratio (JVR), 3.75 to 8.0 and the Reynolds number of 220,000 based on the jet velocity and the hydraulic diameter of the waterjet intake duct. Wall pressure distributions were measured for various JVRs. Three dimensional velocity fields were obtained at the inlet and outlet of the intake duct. It is found that severe acceleration is occurred at the lip region while deceleration is noticeable at the ramp side. The detailed three dimensional velocity fields can be used as the accurate velocity input for the CFD simulation. It is interesting to note that there are many different types of vortices in the instantaneous velocity field. It can be considered that those vortices are generated by the corner of rectangular section of the intake and Gortler vortices due to the curved wall. However, typical secondary flow with a pair of counter rotating vortex pair is clearly seen in the ensemble averaged velocity field.

Experimental Study for the Mixing Effect of the Driven Bar on Rotating Flow in a Closed Cylinder (원통내 회전유동에서 회전봉의 형상이 혼합효과에 미치는 영향에 관한 실험적 연구)

  • Kim, Yu-Gon;Kim, Dong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.156-163
    • /
    • 2001
  • The experiment is conducted on the rapidly rotating incompressible flow within a confined cylinder using LDV(Laser Doppler Velocimetry). The configurations of interest are the flows between a rotating upper disk with a bar and a stationary lower disk enclosed within a cylinder. The flow is considered to be an axisymmetric undisturbed basic flow. The results show that the flow is strongly dependent on the radius and the shape of bar but is negligibly affected by the Reynolds number in turbulent flow. It is observed that in the lid-driven case the main forms near the wall as the Reynolds number increases. The thin bar causes the second axial flow due to the suction effect and the thick bar causes the main flow to be pulled toward the surface of the bar. The step bar shows the dual effect of the two. 1:2 tilt bar shows that the main flow distributes wider than the other cases in which interference occurs due step bar.

Flow Visualization Study on the Turbulent Mixing of Two Fluid Streams(II) (분지관 혼합기의 난류혼합에 대한 유동가시화 연구 (II))

  • Kim, Gyeong-Cheon;Sin, Dae-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.1013-1021
    • /
    • 1998
  • Various vortical structures are investigated by using three kinds of flow visualization methods in branch pipe flows. There are two typical flow patterns when a jet from the branch pipe with various angles is injected to the main pipe cross flow. The velocity range of cross flow of the main pipe is 0.2 m/s ~ 1.2 m/s and the corresponding Reynolds number, R$_{p}$ is of the range 1.5 * 10$^{3}$ ~ 9.02 * 10$^{3}$. The velocity ratio(R), jet velocity/cross flow velocity, is chosen from 1.3 to 4. The subsequent behavior and development of the ring vortices which are created at the jet boundary mainly depend on the velocity ratio. An empirical relation for the shedding frequency of the ring vortices is derived. It is also found that there are two different vortex shedding mechanism in the mixing of two fluid streams.s.

DEVELOPMENT OF GENERAL PURPOSE THERMO/FLUID FLOW ANALYSIS PROGRAM NUFLEX (범용 열/유체 유동해석 프로그램 NUFLEX의 개발)

  • Hur, Nahm-Keon;Won, Chan-Shik;Ryou, Hong-Sun;Son, Gi-Hun;Kim, Sa-Ryang
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.87-90
    • /
    • 2007
  • A general purpose program NUFLEX for the analysis 3-D thermo/fluid flow and pre/post processor in complex geometry has been developed, which consists of a flow solver based on FVM and GUI based pre/post processor. The solver employs a general non-orthogonal grid system with structured grid and solves laminar and turbulent flows with standard/RNG ${\kappa}-{\varepsilon}\;SST$ turbulence model. In addition, NUFLEX is incorporated with various physical models, such as interfacial tracking, cavitation, MHD, melting/solidification and spray model. For the purpose of verification of the program and testing the applicability, many actual problems are solved and compared with the available data. Comparison of the results with that by STAR-CD or FLUENT program has been also made for the same flow configuration and grid structure to test the validity of NUFLEX.

  • PDF

The methods for reducing NO emitted from a combustor (연소로에서 방출되는 NO를 저감시키기 위한 방법)

  • Lee, Ki-Yong;Nam, Tae-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.453-458
    • /
    • 2000
  • The paper describes a study of the variation of the NO production emitted from turbulent propane flames established on a practical combustor where a primary and a secondary fuel lines are installed. The flowrate of the secondary fuel is pulsated or added in addition to that of the primary fuel which constrantly flows to the nozzle of the burner. Two modes depending on the positions of supplying the secondary fuel are performed; one is for its position to be placed at the center of the primary fuel tube and the other around the stabilization baffle. The mean concentrations of gas species, $O_2,\;Co\;CO_2,\;NO$, and HC(unburnt hydrocarbones) have been measured at the exit of the combustor. As equivalence ration $({\Phi})$ is increased the profile of the NO concentration on the latter mode rises slowly less than that on the former one. In the range of ${\Phi}=0.5$ to 0.54 the NO production is reduced by about 35% more on the latter mode than on the former one. The influence of pulsating the secondary fuel on the variation of the NO concentration doesn't appear at both modes.

  • PDF

Simultaneous Analysis of Concentration and Flow Fields in A Stirred Tank Using Large Eddy Simulation (대형 와 모사를 사용한 혼합 탱크 내의 농도장과 유동장의 동시 해석)

  • Yoon, Hyun-Sik;Chun, Ho-Hwan;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1282-1289
    • /
    • 2003
  • Transport of a scalar quantity, such as chemical concentration or temperature, is important in many engineering applications and environmental flows. Here we report on results obtained from the large eddy simulations of flow and concentration fields inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius (Yoon et al.). This study focused on the concentration development at different molecular diffusivities in a stirred tank operated under turbulent conditions. The main objective of the work presented here is to study the large-scale mixing structure at different molecular diffusivities in a stirred tank by using the large eddy simulation. The time sequence of concentration and flow fields shows the flow dependency of the concentration development. The presence of spatial inhomogenieties is detailed by observing the time variation oflocal concentration at different positions.