• Title/Summary/Keyword: Turbulent Flows

Search Result 739, Processing Time 0.023 seconds

Navier-Stokes Computations for Hypersonic flow on Blunt Bodies (뭉뚝물체 주변에 형성된 극초음속유동에 대한 Navier-Stokes 계산)

  • Baik Doo S.;Kim Duk S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.91-97
    • /
    • 2001
  • The thin-layer Navier-Stokes equations are solved for the hypersonic flow over blunt cone configurations with applications to laminar as well as turbulent flows. The equations are expressed in the forms of flux-vector splitting and explicit algorithm. The upwind schemes of Steger-Warming and van Leer are investigated in their ability to accurately predict the heating loads along the surface of the body. A comparison with the second order extensions of these schemes is made and a hybrid scheme incorporating a combination of central differencing and flux-vector-splitting is presented. This scheme is also investigated in its ability to accurately predict heat transfer distributions.

  • PDF

LARGE EDDY SIMULATION OF FLOW AND MASS EXCHANGE PROCESSES BETWEEN A CHANNEL AND AN OPEN CAVITY (LES를 이용한 열린 공동 유동과 공동 내 물질 확산의 수치적 모사)

  • Chang K.S.;Park S.O.;Constantinescu G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.239-243
    • /
    • 2005
  • Fully three-dimensional Large Eddy Simulation calculations of the flow past 2D cavity are conducted to study the purging of neutrally buoyant or dense miscible contaminants introduced instantaneously inside the cavity. The length to depth ratio(L/D) is 2 and Reynolds number based on the depth is 3,360. Fully developed turbulent inflow are fed at the inlet from precursor simulation of channel flow. Mean flow pattern and unsteady features are investigated based on the experimental data of Pereira and Sousa. From the study of mass exchange processes, it is found that the mechanism of removal of the contaminant is very different between the non-buoyant and buoyant cases. In the buoyant case, internal wave motion which interacts with a strong cavity vortex is dominant in the ejection mechanism of the contaminants.

  • PDF

COMPARISON OF COUPLING METHODS FOR NAVIER-STOKES EQUATIONS AND TURBULENCE MODEL EQUATIONS (Navier-Stokes 방정식과 난류모델 방정식의 연계방법 비교)

  • Lee, Seung-Soo;Ryu, Se-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.111-116
    • /
    • 2005
  • Two coupling methods for the Navier-Stokes equations and a two-equation turbulence model equations are compared. They are the strongly coupled method and the loosely coupled method. The strongly coupled method solves the Navier-Stokes equations and the two-equation turbulence model equations simultaneously, while the loosely coupled method solves the Navier-Stokes equation with the turbulence viscosity fixed and subsequently solves the turbulence model equations with all the flow quantities fixed. In this paper, performances of two coupling methods are compared for two and three-dimensional problems.

  • PDF

On the Large Eddy Simulation of Scalar Transport with Prandtl Number up to 10 Using Dynamic Mixed Model

  • Na Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.913-923
    • /
    • 2005
  • The dynamic mixed model (DMM) combined with a box filter of Zang et. al. (1993) has been generalized for passive scalar transport and applied to large eddy simulation of turbulent channel flows with Prandtl number up to 10. Results from a priori test showed that DMM is capable of predicting both subgrid-scale (SGS) scalar flux and dissipation rather accurately for the Prandtl numbers considered. This would suggest that the favorable feature of DMM, originally developed for the velocity field, works equally well for scalar transport problem. The validity of the DMM has also been tested a posteriori. The results of the large eddy simulation showed that DMM is superior to the dynamic Smagorinsky model in the prediction of scalar field and the model performance of DMM depends to a lesser degree on the ratio of test to grid filter widths, unlike in the a priori test.

A Three-Dimensional Numerical Analysis of In-Cylinder Flows in Reciprocating Model Engine (3차원 모형기관 실린더내의 흡입과정 유동에 대한 수치해석)

  • 하각현;김원갑;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.1-12
    • /
    • 1994
  • A model engine having a flat cylinder head and a piston face and an off-center intake valve is investigated in this analysis. Calculation domain is confined to the half of the cylinder with swirl free inlet velocity condition. Due to the absence of measured inlet conditions, the inlet flowrates during induction period are calculated from overall mass and energy conservation requirements. Finite difference equation for velocity and pressure were solved by modified SIMPLER algorithm, standard k-$\varepsilon$turbulence model and hybrid scheme. From the result of prediction, dimensionless velocity distribution and turbulence intensities are investigated at each crank angle.

  • PDF

How strong magnetic fields can be in AGN accretion flows

  • Pariev, Vladimir
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.22.2-22.2
    • /
    • 2008
  • Radio and X-ray observations of radio lobes in galaxy clusters indicate large energies stored in the magnetic fields in the radio lobes. These magnetic fields are undoubtedly produced and amplified by the accretion onto the central supermassive black hole. I review recent progress and remaining problems in our understanding of the ways how these magnetic fields can be produced and amplified in the accretion disks and what can be the limiting strength of the magnetic field. The major remaining issue is how ordered magnetic spirals (or jets) can emerge from the turbulent small scale magnetic fields produced by MRI. Another issue is the ratio of the axial to the azimuthal magnetic field in jets.

  • PDF

Large eddy simulation using a curvilinear coordinate system for the flow around a square cylinder

  • Ono, Yoshiyuki;Tamura, Tetsuro
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.369-378
    • /
    • 2002
  • The application of Large Eddy Simulation (LES) in a curvilinear coordinate system to the flow around a square cylinder is presented. In order to obtain sufficient resolution near the side of the cylinder, we use an O-type grid. Even with a curvilinear coordinate system, it is difficult to avoid the numerical oscillation arising in high-Reynolds-number flows past a bluff body, without using an extremely fine grid used. An upwind scheme has the effect of removing the numerical oscillations, but, it is accompanied by numerical dissipation that is a kind of an additional sub-grid scale effect. Firstly, we investigate the effect of numerical dissipation on the computational results in a case where turbulent dissipation is removed in order to clarify the differences between the effect of numerical dissipation. Next, the applicability and the limitations of the present method, which combine the dynamic SGS model with acceptable numerical dissipation, are discussed.

An Analytical Calculation of the Transport of the Solute Dumped in a Homogeneous Open Sea with Mean and Oscillatory Flows

  • Lee Ho Jin;Jung Kyung Tae
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.2
    • /
    • pp.90-95
    • /
    • 2004
  • An analytical model for predicting the convection-diffusion of solute dumped in a homogeneous open sea of constant water depth has been developed in a time-integral form. The model incorporates spatially uniform, uni-directional, mean and oscillatory currents for horizontal convection, the settling velocity for the vertical convection, and the anisotropic turbulent diffusion. Two transformations were introduced to reduce the convection-diffusion equation to the Fickian type diffusion equation, and then the Galerkin method was then applied via the expansion of eigenfunctions over the water column derived from the Sturm-Liouville problem. A series of calculations has been performed to demonstrate the applicability of the model.

A Design of Engine Exhaust Ejector for Smart UAV (스마트무인기의 엔진 배기이젝터 설계에 관한 연구)

  • Lee, Chang-Ho;Kim, Jai-Moo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.403-406
    • /
    • 2006
  • An ejector is designed for the purpose of engine bay cooling. The primary flow of the ejector is the exhaust gas of the PW206C turboshaft engine. The mass flow of secondary flow is calculated by using the approximate analytic equation. For the purpose of verification of approximate analytic method, comparison is made with the results of Navier-Stokes turbulent flow solution. According to the results of CFD, the mixing of two flows is incomplete due to the short length of mixing duct.

  • PDF

Wind tunnel test study on verifying the characteristics of torsional fluctuating wind force of rectangular tall buildings (고층건축물의 비틀림방향 변동풍력의 특성에 관한 실험적 연구)

  • Ha, Young-Cheol;Kim, Dong-Woo;Kil, Yong-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.101-104
    • /
    • 2006
  • This study aims at verifying characteristics of torsional fluctuating moment coefficient and power spectral density, which is needed to estimate torsional response of tall buildings. In order to estimate characteristics, the wind tunnel tests have been conducted on 52 types aero-elastic model of the rectangular prisms with various aspects ratios, side ratios and surface roughness in turbulent boundary layer flows. In this paper, characteristics of torsional fluctuating wind force are briefly discussed and then these results were mainly analyzed as a function of the aspects ratios and side ratios of buildings.

  • PDF