• Title/Summary/Keyword: Turbulent Flow Fields

Search Result 264, Processing Time 0.028 seconds

A Study on the Turbulent Natural Convection - Radiative Heat Transfer In a Partitioned Enclosure (차폐막이 있는 밀폐공간 내에서의 난류 자연대류 - 복사열전달에 관한 연구)

  • 박경우;이주형;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2738-2750
    • /
    • 1994
  • The Effects of radiative heat transfer on turbulent flow in a partitioned enclosure is studied numerically. The enclosure is partially divided by a thin, poorly conducting vertical divider projecting from the ceiling of the enclosure. The low Reynolds number $k-{\epsilon}$ model is adopted to calculate the turbulent flow field. The solutions to the radiative transfer equations are obtained by the discrete ordinates method(DOM). This method is based on control volume method and is compatible with the SIMPLER algorithm used to solve the momentum and energy equations. The effects of optical thickness and Planck number on the flow, temperature fields and heat transfer rates are investigated for a moderate Rayleigh number($=10^9$). The changes in buoyant flow fields and temperature distributions due to the variation of baffle length are also analyzed. From the predictions, radiant heat exchange between the baffle and the sidewalls strongly influences the temperature distribution in the baffle and its vicinity and total heat transfer increases as the optical thickness and the baffle length decrease. It is possible to neglect the radiative heat transfer effect when Planck number is over one.

A New Experiment on Interaction of Normal Shock Wave and Turbulent Boundary Layer in a Supersonic Diffuser (초음속디퓨져에서 발생하는 수직충격파의 난류경계층의 간섭에 관한 실험)

  • 김희동;홍종우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2283-2296
    • /
    • 1995
  • Experiments of normal shock wave/turbulent boundary layer interaction were conducted in a supersonic diffuser. The flow Mach number just upstream of the normal shock wave was in the range of 1.10 to 1.70 and Reynolds number based upon the turbulent boundary layer thickness was varied in the range of 2.2*10$^{[-994]}$ -4.4*10$^{[-994]}$ . The wall pressures in streamwise and spanwise directions were measured for two test cases, in which the turbulent boundary layer thickness incoming into the supersonic diffuser was changed. The results show that the interactions of normal shock wave with turbulent boundary layer in the supersonic diffuser can be divided into three patterns, i.e., transonic interaction, weak interaction and strong interaction, depending on Mach number. The weak interactions generate the post-shock expansion which its strength is strong as the Mach number increases and the strong interactions form the pseudo-shock waves. From the spanwise measurements of wall pressure, it is known that if the flow Mach number is low, the interacting flow fields essentially appear two-dimensional, but they have an apparent 3-dimensionality for the higher Mach numbers.

Real-time Analysis of Exhaust Gas Temperature Field in Turbulent Flow Using Laser Absorption Spectroscopy (레이저흡수분광을 이용한 난류유동 배기가스 온도장 실시간 분석 연구)

  • Doo Won Choi
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.2
    • /
    • pp.73-78
    • /
    • 2024
  • This study presents a real-time method that uses Laser Absorption Spectroscopy (LAS) to measure exhaust gas temperatures in turbulent flow fields. It was possible to measure temperature by passing a laser beam through the exhaust gas in a grid pattern, and obtain a temperature distribution image through time series analysis at 0.1 second intervals. Temperature image resolution has been improved with CT reconstruction algorithms. Estimating maximum temperature values and locations enabled 2D temperature analysis, surpassing single-point methods like thermocouples. The accuracy of LAS measurements was evaluated by comparison with thermocouple measurements. This approach will contribute to automotive technology and environmental protection by providing reliable temperature data for interpreting turbulent temperature distributions.

Investigation of the Three-dimensional Turbulent Flow Fields in Cone Type Gas Burner for Furnace - On the Turbulent Characteristics - (난방기용 콘형 가스버너에서 3차원 난류 유동장 고찰 - 난류특성치에 대하여 -)

  • Kim, J.K.;Jeong, K.J.;Kim, S.W.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • This paper represents the turbulent intensity, the turbulent kinetic energy and Reynolds shear stress in the X-Y plane of cone type swirl gas burner measured by using X-probe from the hot-wire anemometer system. The experiment is carried out at flowrate 350 and $450{\ell}/min$ respectively in the test section of subsonic wind tunnel. The turbulent intensity and the turbulent kinetic energy show that the maximum value is formed in the narrow slits distributed radially on the edge of a cone type swirl burner, hence, the combustion reaction is anticipated to occur actively near this region. And the turbulent intensities ${\upsilon}\;and\;{\omega}$ are disappeared faster than the turbulent intensity u due to the inclined flow velocity ejecting from the swirl vanes of a cone type baffle plate of burner. Moreover, the Reynolds shear stress $u{\upsilon}$ is distributed about three times as large as the Reynolds shear stress $u{\omega}$ in the outer region of the cone type gas burner.

  • PDF

Effects of the Temporal Increase Rate of Reynolds Number on Turbulent Channel Flows (레이놀즈 수의 시간 증가율에 따른 난류 채널유동의 변화)

  • Jung, Seo Yoon;Kim, Kyoungyoun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.435-440
    • /
    • 2016
  • Effects of the increase rate of Reynold number on near-wall turbulent structures are investigated by performing direct numerical simulations of transient turbulent channel flows. The simulations were started with the fully-developed turbulent channel flow at $Re_{\tau}=180$, then temporal accelerations were applied. During the acceleration, the Reynolds number, based on the channel width and the bulk mean velocity, increased almost linearly from 5600 to 13600. To elucidate the effects of flow acceleration rates on near-wall turbulence, a wide range of durations for acceleration were selected. Various turbulent statistics and instantaneous flow fields revealed that the rapid increase of flow rate invoked bypass-transition like phenomena in the transient flow. By contrast, the flow evolved progressively and the bypass transition did not clearly occur during mild flow acceleration. The present study suggests that the transition to the new turbulent regime in transient channel flow is mainly affected by the flow acceleration rate, not by the ratio of the final and initial Reynolds numbers.

Simulation of Axisymmetric Flows with Swirl in a Gas Turbine Combustor (Swirl이 있는 축대칭 연소기의 난류연소유동 해석)

  • Shin, Dong-Shin;Lim, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.55-66
    • /
    • 2000
  • A general purpose program for the analysis of flows in a gas turbine combustor is developed. The program uses non-staggered grids based on finite volume method and the cartesian velocities as primitive variables. A flow inside the C-type diffuser is simulated to check the boundary fitted coordinate. The velocity profiles at cross section agree well with experimental results. A turbulent diffusion flame behind a bluff body is simulated for the combustion simulation. Simulated results show good agreement with experimental data. Finally, a turbulent flow with swirl in a gas turbine combustor was simulated. The results show two recirculating region and simulated velocity fields agree well with experimental data. The distance between two recirculating regions becomes shorter as swirl angle increases. Swirl angle changes angular momentum and streamlines in flow fields.

  • PDF

Long-Term Evolution of Decaying MHD Turbulence in the Multiphase ISM

  • Kim, Chang-Goo;Basu, Shantanu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2013
  • Supersonic turbulence is believed to decay rapidly within a flow crossing time irrespective of the degree of magnetization. However, this consensus of decaying magnetohydrodynamic (MHD) turbulence relies on local isothermal simulations, which are unable to investigate the role of global magnetic fields and structures. Utilizing three-dimensional MHD simulations including interstellar cooling and heating, we investigate decaying MHD turbulence within cold neutral medium sheets embedded in warm neutral medium. Early evolution is consistent with previous studies characterized rapid decay of turbulence with the decaying time shorter than a flow crossing time and power-law temporal decay of turbulent kinetic energy with slope of -1. If initial magnetic fields are strong and perpendicular to the sheet, however long term evolutions of kinetic energy shows that a significant amount of turbulent energy still remains even after ten flow crossing times, and decaying rate is reduced as field strengths increase. We analyse power spectra of remaining turbulence to show that incompressible, in-plane motions dominate.

  • PDF

Numerical Analysis of 3-D Turbulent Flows Around a High Speed Train Including Cross-Wind Effects (측풍영향을 고려한 고속전철 주위의 3차원 난류유동 해석)

  • Jung Y. R.;Park W. G.;Ha S. D.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.71-80
    • /
    • 1996
  • An iterative time marching procedure for solving incompressible turbulent flow has been applied to the flows around a high speed train including cross-wind effects. This procedure solves three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using first-order accurate schemes for the time derivatives and third/second-order accurate schemes for the spatial derivatives. Turbulent flows have been modeled by Baldwin-Lomax turbulent model. To validate present procedure, the flow around a high speed train at zero yaw angle was simulated and compared with experimental data. Generally good agreement with experiments was achieved. The flow fields around the high speed train at 9.2°, 16.7°, and 45° of yaw angle were also simulated.

  • PDF

Numerical Analysis of Turbulent Flow and Heat Transfer Normal to a Staggered Tube Bank (교차된 관군에 수직한 난류유동 및 난류열전달의 수치해석)

  • 이건휘;이병곤;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.218-228
    • /
    • 1991
  • Since heat exchangers are composed of bank of tubes, the knowledge on the flow and heat transfer characteristics of the tube bank are required for the optimum design and selection of heat exchangers. In this paper, the turbulent flow fields and heat transfers normal to a staggered tube bank are solved numerically employing K-.epsilon. 2 equation turbulence model and non-orthogonal coordinate transformation for the treatment of curved surface of tubes. Predicted mean Nusselt numbers of tube bank agree reasonably well with Grimision's correlation

Simulation of buoyant turbulent flow in a stairwell (건물 계단통에서의 부력에 의한 난류유동 해석)

  • 명현국;진은주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.217-226
    • /
    • 1998
  • A numerical study has been carried out for two- and three-dimensional buoyant turbulent flow in a stairwell model. The Reynolds-averaged Navier-Stokes and energy equations are solved with the authors'own computer program. Two models by the Boussinesq approximation and the density-gradient form are used for buoyancy terms in the governing equations. Two- and three-dimensional predictions of the velocity and temperature fields are presented and the results are compared with experimental data. Comparisons have also been made in detail with two-dimensional predictions. Two-dimensional and three-dimensional simulations have predicted the overall features of the flow satisfactorily. A better agreement with experiment is achieved with three-dimensional simulations.

  • PDF