DOI QR코드

DOI QR Code

Effects of the Temporal Increase Rate of Reynolds Number on Turbulent Channel Flows

레이놀즈 수의 시간 증가율에 따른 난류 채널유동의 변화

  • Received : 2016.01.27
  • Accepted : 2016.05.22
  • Published : 2016.07.01

Abstract

Effects of the increase rate of Reynold number on near-wall turbulent structures are investigated by performing direct numerical simulations of transient turbulent channel flows. The simulations were started with the fully-developed turbulent channel flow at $Re_{\tau}=180$, then temporal accelerations were applied. During the acceleration, the Reynolds number, based on the channel width and the bulk mean velocity, increased almost linearly from 5600 to 13600. To elucidate the effects of flow acceleration rates on near-wall turbulence, a wide range of durations for acceleration were selected. Various turbulent statistics and instantaneous flow fields revealed that the rapid increase of flow rate invoked bypass-transition like phenomena in the transient flow. By contrast, the flow evolved progressively and the bypass transition did not clearly occur during mild flow acceleration. The present study suggests that the transition to the new turbulent regime in transient channel flow is mainly affected by the flow acceleration rate, not by the ratio of the final and initial Reynolds numbers.

레이놀즈 수의 시간 증가율이 벽면난류 구조에 미치는 영향을 난류 채널유동에 대한 직접수치모사를 수행하여 조사하였다. 완전 발달된 $Re_{\tau}=180$의 난류 채널유동이 가속을 받게 되어 평균속도로 무차원화된 레이놀즈 수가 5600에서 13600까지 선형적으로 변화하게 된다. 다양한 가속 시간에 대한 계산을 수행하여 벽면난류에 대한 가속율의 효과를 파악하였다. 유량의 증가율이 큰 경우에는 우회 천이와 유사한 현상이 발견되었으며, 유량의 증가율이 낮은 경우에는 우회 천이 현상이 거의 나타나지 않았다. 본 연구 결과는 초기 레이놀즈 수와 최종 레이놀즈 수의 비 보다는 레이놀즈 수의 시간 증가율이 채널 내 과도유동에서의 우회 천이 현상 발생에 주요인자 임을 제시한다.

Keywords

References

  1. Kataoka, K., Kawabata, T. and Miki, K., 1975, "The Start-up Response of Pipe Flow to a Step Change in Flow Rate," Journal of Chemical Engineering of Japan, Vol. 8, No. 4, pp. 266-271. https://doi.org/10.1252/jcej.8.266
  2. Mizushina, T., Maruyama, T. and Hirasawa, H., 1975, "Structure of the Turbulence in Pulsating Pipe Flows," Journal of Chemical Engineering of Japan, Vol. 8, No. 3, pp. 210-216. https://doi.org/10.1252/jcej.8.210
  3. He, S. and Jackson, J. D., 2000, "A Study of Turbulence Under Conditions of Transient Flow in a Pipe," J. Fluid Mech., Vol. 408, pp. 1-38. https://doi.org/10.1017/S0022112099007016
  4. Greenblatt, D. and Moss, E. A., 2004, "Rapid Temporal Acceleration of a Turbulent Pipe Flow," J. Fluid Mech., Vol. 514, pp. 65-75. https://doi.org/10.1017/S0022112004000114
  5. Chung, Y. M., 2005, "Unsteady Turbulent Flow with Sudden Pressure Gradient Changes," Int. J. Numer. Meth. Fl., Vol. 47, pp. 925-930. https://doi.org/10.1002/fld.917
  6. Jung, S.Y. and Chung, Y. M., 2012, "Large-eddy Simulation of Accelerated Turbulent Flow in a Circular Pipe," Int. J. Heat Fluid Fl., Vol. 33, No. 1, pp. 1-8. https://doi.org/10.1016/j.ijheatfluidflow.2011.11.005
  7. He, S. and Seddighi, M., 2013, "Turbulence in Transient Channel Flow," J. Fluid Mech., Vol. 715, pp. 60-102. https://doi.org/10.1017/jfm.2012.498
  8. He, S. and Seddighi, M., 2015, "Transition of Transient Channel Flow After a Change in Reynolds Number," J. Fluid Mech., Vol. 764, pp. 395-427. https://doi.org/10.1017/jfm.2014.698
  9. Kim, K., Sung, H. J. and Adrian, R. J., 2008, "Effects of Background Noise on Generating Coherent Packets of Hairpin Vortices," Phys. Fluids, Vol. 20, pp. 105-107.
  10. Dean, R. B., 1978, "Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-dimensional Rectangular Duct Flow," J. Fluid Eng., Vol. 100, pp. 215-223. https://doi.org/10.1115/1.3448633
  11. Chakraborty, P., Balachandar, S. and Adrian, R. J., 2005, "On the Relationships Between Local Vortex Identification Schemes," J. Fluid Mech., Vol. 535, pp. 189-214. https://doi.org/10.1017/S0022112005004726