• Title/Summary/Keyword: Turbulent Coherent Structures

Search Result 41, Processing Time 0.02 seconds

Analysis of Generating Mechanism of Secondary Flows in Turbulent Open-Channel Flows using DNS Data (DNS 자료를 이용한 개수로에서 이차흐름의 생성메커니즘 분석)

  • Joung, Younghoon;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.139-144
    • /
    • 2006
  • Using DNS data for turbulent flows in an open-channel with sidewalls, the mechanisms by which secondary flows are generated and by which Reynolds shear stresses are created, are demonstrated. Near the sidewall, secondary flows invading towards the sidewall are observed in the regions of both lower and upper corners, while secondary flows ejecting from the sidewall towards the center of the channel are created elsewhere. The distributions of Reynolds shear stresses near the sidewall are analyzed, connecting their productions with coherent structures. A quadrant analysis shows that sweeps are dominant in two corner regions where secondary flows invading towards the sidewall are generated, but that ejections are dominant in the region where secondary flows ejecting towards the center of the channel are created. Also, conditional quadrant analyses reveal that the productions of Reynolds shear stresses and the patterns of secondary flows are determined by the directional tendencies of coherent structures.

Organized structure of turbulent boundary layer with rod-roughened wall (표면조도가 난류구조에 미치는 영향)

  • Lee, Jae-Hwa;Lee, Seung-Hyun;Kim, Kyoung-Youn;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.189-192
    • /
    • 2008
  • Turbulent coherent structure near rod-roughened wall are investigated by analyzing the database of direct numerical simulation of turbulent boundary layer. The roughness sublayer id defined as two-point correlations are not independent of streamwise locations around roughness. The roughness sublayer based on the two-point spatial correlation is different from that given by one-point statistics. Quadrant analysis and probability-weighted Reynolds shear stress indicate that turbulent structures are not affected by surface roughness above the roughness sublayer defined by the spatial correlations. The conditionally-averaged flow fields associated with Reynolds shear stress producing Q2/Q4 events show that though turbulent vortices are affected in the roughness sublayer, these are very similar at different streamwise locations above the roughness sublayer. The Reynolds stress producing turbulent vortices in the log layer have almost the same geometrical shape as those in the smooth wall-bounded turbulent flows. This suggests that the mechanism by which the Reynolds stress is produced in the log layer has not been significantly affected by the present surface roughness.

  • PDF

Large-Scale Structure of Leading-Edge Separation Bbubble with Local Forcing (국소교란이 가해지는 박리기포의 대형구조)

  • 김유익;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1134-1147
    • /
    • 1995
  • POD (proper orthogonal decomposition) is applied to turbulent leading-edge separation bubble to extract coherent structures. A two-dimensional leading-edge separation bubble is simulated by discrete-vortex method, where a time-dependent source forcing is incorporated. Based on the wealth of numerical data, POD is applied in a range of the forcing amplitude ( $A_{o}$ = 0, 0.5, 1.0 and 1.5) and forcing frequency (0 .leq. $f_{F}$H/ $U_{\infty}$.leq. 0.3). It is demonstrated that the structures of POD have noticeable changes with local forcings. In an effort to investigate the mechanism of decreasing reattachment length, dynamic behaviors of the expansion coefficients and contributions of the eigenfunctions of POD are scrutinized. As the forcing amplitude increases, the large-scale vortex structures are formed near the forcing amplitude increases, the large-scale vortex structures are formed near the separation point and the flow structures become more organized and more regular, accompanying with the reduction of reattachment length. By further inverstigation of POD global entropy, it is seen that the reattachment length is closely linked to the degree of organization of the flow structures.es.s.

The Effect of Free Stream Turbulence on the Coherent Structures in the near Wake of a Circular Cylinder (원주 후류의 응집구조에 대한 자유흐름 난류강도의 영향)

  • 정양범;양종필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.60-72
    • /
    • 1994
  • The effect of free stream tubulence on the coherent structure in the near wake of a circular cylinder was investigated by a conditional sampling technique. The measurements were made from C.T.A. with hot wire I-probe and a Split-film sensor. Contours of phase-averaged velocity and vorticities were presented and discussed. It was found that the value of the vortex strength increased with increasing free stream turbulence which can enhance the roll-up of the shear layer.

  • PDF

A Study on the Effect of Large Coherent Structures to the Skin Friction by POD Analysis (적합직교분해(POD)기법을 사용한 난류 응집구조 거동에 관한 연구)

  • Shin, Seong-Yun;Jung, Kwang-Hyo;Kang, Yong-Duck;Suh, Sung-Bu;Kim, Jin;An, Nam-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.406-414
    • /
    • 2017
  • An experimental study in a recirculating water channel was carried out to investigate the effect of large coherent structures to the skin friction on a flat plate. Particle Image Velocimetry (PIV) technique was used to quantify characteristic features of coherent structures growing to the boundary layer. In the PIV measurement, it is difficult to calculate the friction velocity near the wall region due to laser deflection and uncertainty so that Clauser fitting method at the logarithmic region was adopted to compute the friction velocity and compared with the one directly measured by the dynamometer. With changing the free-stream velocity from 0.5 m/s to 1.0 m/s, the activity of coherent structures in the logarithmic region was increased over three times in terms of Reynolds stress. The flow field was separated by Variable Interval Time Averaging (VITA) technique into the weak and the strong structure case depending on the existence large coherent structures in order to validate its effectiveness. The stream-wise velocity fluctuation was scanned through at the boundary thickness whether it had a large deviation from background flow. With coherent structures connected from near-wall to the boundary layer, mean wall shear stress was higher than that of weak structure case. Proper Orthogonal Decomposition (POD) analysis was also applied to compare the energy budget between them at each free-stream velocity.

Rectangular prism pressure coherence by modified Morlet continuous wavelet transform

  • Le, Thai-Hoa;Caracoglia, Luca
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.661-682
    • /
    • 2015
  • This study investigates the use of time-frequency coherence analysis for detecting and evaluating coherent "structures" of surface pressures and wind turbulence components, simultaneously on the time-frequency plane. The continuous wavelet transform-based coherence is employed in this time-frequency examination since it enables multi-resolution analysis of non-stationary signals. The wavelet coherence quantity is used to identify highly coherent "events" and the "coherent structure" of both wind turbulence components and surface pressures on rectangular prisms, which are measured experimentally. The study also examines, by proposing a "modified" complex Morlet wavelet function, the influence of the time-frequency resolution and wavelet parameters (i.e., central frequency and bandwidth) on the wavelet coherence of the surface pressures. It is found that the time-frequency resolution may significantly affect the accuracy of the time-frequency coherence; the selection of the central frequency in the modified complex Morlet wavelet is the key parameter for the time-frequency resolution analysis. Furthermore, the concepts of time-averaged wavelet coherence and wavelet coherence ridge are used to better investigate the time-frequency coherence, the coherently dominant events and the time-varying coherence distribution. Experimental data derived from physical measurements of turbulent flow and surface pressures on rectangular prisms with slenderness ratios B/D=1:1 and B/D=5:1, are analyzed.

Characteristics of Accelerations in Turbulent Channel Flow (난류 채널 유동에서의 가속도 특성)

  • Yeo, Kyong-Min;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1801-1805
    • /
    • 2003
  • The intermittent characteristics of fluid particle accelerations near the wall are investigated with the higher-order statistics and the probability density functions (PDF) by using a direct numerical simulation of turbulent channel flow. Also, the behaviors of acceleration associated with the coherent structures are discussed. The flatness factor of wall-normal acceleration is extremely high near the wall and it exceeds the previously reported value obtained in isotropic turbulence. The presence of the wall seems to make the accelerations more intermittent and the associated mechanism is explained with the PDFs. The skewness factor of wall-normal acceleration indicates that accelerations are associated with the streamwise vortices.

  • PDF

Experimental investigation on the turbulent elliptic jets by using a 3-D LDV system (3-D LDV 시스템을 이용한 타원제트의 난류특성에 관한 연구)

  • 권영철;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2160-2170
    • /
    • 1991
  • Three-dimensional turbulent structures in the near field of elliptic jet were experimentally investigated by using a three-color, three-component Laser Doppler Velocimeter. The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter(De) was about 4*10$^{4}$. The turbulent characteristics of a sharp-edged elliptic nozzle with aspect ratio of 2 were analyzed along major and minor axis at X/De=2,3,5,7 and along the centerline up to X/De=14. Quantities measured at each point with the 3-D LDV system were three orthogonal velocity components, turbulent intensity, skewness, flatness, and Reynolds shear stress. The nondimensional mean velocities coincided well with the Schlichting's empirical curve with going downstream. Elliptic jet of AR=2 had two switching points at about X/De=2 and 16. The turbulent intensity along the minor axis was distributed widely than that along the major axis. In the near field, X/De<5, the Reynolds shear stresses of the inner part of the elliptic jet had negative value, which indicated the enhancement of entrainment toward the inner part.

Experimental Investigation on the Drag Reduction Mechanism of Outer-layer Vertical Blades Array using Stereoscopic Time-Resolved PIV (스테레오 시간분해 입자영상유속계를 이용한 외부경계층 수직날 배열에 의한 마찰저항 저감 기구에 관한 실험적 조사)

  • Lee, Inwon;Park, Seong-Hyeon;Chun, Ho-Hwan;Hwang, Arom;An, Nam-Hyun
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.95-101
    • /
    • 2013
  • A stereo PIV measurements in a circulating water channel has been performed to investigate the skin friction reduction mechanism of the outer-layer vertical blades first devised by Hutchins. In a recent PIV measurement study, considerable skin friction reduction was achieved as much as 2.73%~7.95% by outer-layer vertical blades array. In the present study, the influence of vertical blades array upon the characteristics of the turbulent coherent structures was analyzed by proper orthogonal decomposition method. It is observed that the vortical structures are cut and deformed by blades array and also the turbulent intensity and the Reynolds stress were weakened by the blades. These phenomena strongly associate the skin-friction drag reduction mechanism in the turbulent boundary layer flow.

Investigation of Twin Vortices in Turbulent Compound Open-Channel Flows using DNS Data (DNS 자료를 이용한 복단면 개수로에서 쌍와(雙渦)에 관한 연구)

  • Joung, Younghoon;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.253-262
    • /
    • 2006
  • The present paper presents a direct numerical simulation of turbulent flows in a compound open-channel. Mean flows and turbulence structures are provided, and they are compared with the numerical data and measured data available in the literature. The simulated results show that twin vortices are generated near the juncture of the main channel and the floodplain and their maximum magnitude is about 5% of bulk streamwise velocity. At the juncture, the simulated wall shear stress becomes the maximum unlike the experimental data. A quadrant analysis shows that both sweeps and ejections become the main contributor to production of Reynolds shear stresses. A conditional quadrant analysis reveals that the directional tendency of dominant coherent structures determines the production of Reynolds shear stress and the pattern of twin vortices.