• 제목/요약/키워드: Turbulent Boundary

검색결과 628건 처리시간 0.026초

축방향 난류경계층에서 벽면마찰 섭동량의 공간 및 시간에 따른 특성 (Space-Time Characteristics of the Wall Shear-Stress Fluctuations in a Low-Reynolds Number Axial Turbulent Boundary Layer)

  • 신동신
    • 설비공학논문집
    • /
    • 제15권11호
    • /
    • pp.895-901
    • /
    • 2003
  • Direct numerical simulation database of an axial turbulent boundary layer is used to compute frequency and wave number spectra of the wall shear-stress fluctuations in a low-Reynolds number axial turbulent boundary layer. One-dimensional and two-dimensional power spectra of flow variables are calculated and compared. At low wave numbers and frequencies, the power of streamwise shear stress is larger than that of spanwise shear stress, while the powers of both stresses are almost the same at high wave numbers and frequencies. The frequency/streamwise wave number spectra of the wall flow variables show that large-scale fluctuations to the ms value is largest for the streamwise shear stress, while that of small-scale fluctuations to the rms value is largest for pressure. In the two-point auto-correlations, negative correlation occurs in streamwise separations for pressure and spanwise shear stress, and in spanwise correlation for both shear stresses.

전자기력을 이용한 난류경계층 제어 (Turbulent boundary layer control via electro-magnetic forces)

  • 이중호;성형진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.166-171
    • /
    • 2004
  • Direct numerical simulations are peformed to investigate the physics of a spatially developing turbulent boundary layer flow suddenly subjected to spanwise oscillating electro-magnetic forces in the near-wall region. The Reynolds number based on the inlet momentum thickness and free-stream velocity is $Re_\theta=300$. A fully-implicit fractional step method is employed to simulate the flow. The mean flow properties and the Reynolds stresses are obtained to analyze the near-wall turbulent structure. It is found that skin-friction and turbulent kinetic energy can be reduced by the electro-magnetic forces. Instantaneous flow visualization techniques are used to observe the response of streamwise vortices to spanwise oscillating forces. The near-wall vortical structures are clearly affected by spanwise oscillating electro-magnetic forces.

  • PDF

Simulation of turbulent flow of turbine passage with uniform rotating velocity of guide vane

  • Wang, Wen-Quan;Yan, Yan
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.421-440
    • /
    • 2018
  • In this study, a computational method for wall shear stress combined with an implicit direct-forcing immersed boundary method is presented. Near the immersed boundaries, the sub-grid stress is determined by a wall model in which the wall shear stress is directly calculated from the Lagrangian force on the immersed boundary. A coupling mathematical model of the transition process for a model Francis turbine comprising turbulent flow and rotating rigid guide vanes is established. The spatiotemporal distributions of pressure, velocity, vorticity and turbulent quantity are gained with the transient process; the drag and lift coefficients as well as other forces (moments) are also obtained as functions of the attack angle. At the same time, analysis is conducted of the characteristics of pressure pulsation, velocity stripes and vortex structure at some key parts of flowing passage. The coupling relations among the turbulent flow, the dynamical force (moment) response of blade and the rotating of guide vane are also obtained.

평판 근접 후류에서 경계층의 유동조건에 따른 난류유동장 (Turbulent Flow Field on Boundary Layer Flow Conditions in the Near-Wake of a Flat Plate)

  • 김동하;장조원
    • 한국항공운항학회지
    • /
    • 제12권3호
    • /
    • pp.25-39
    • /
    • 2004
  • An experimental study was quantitatively carried out in order to investigate the influence of flow conditions on a boundary layer in the near-wake of a flat plate. Tripping wires attached at various positions were selected to change flow conditions of a boundary layer in the vicinity of trailing edge. The flows such as laminar, transitional, and turbulent boundary layer at 0.98C from the leading edge are imposed to investigate the evolution of symmetric and asymmetric wake. Measurements were made at freestream velocity of 6.0m/s, and the corresponding Reynolds number is $2.8{\times}10^5$. An x-type hot-wire probe(55P61) was employed to measure at 8 stations in the near-wake region. Test results show that the near-wake of the flat plate for the case of a laminar and transitional boundary layer is sensitive to mean flow shear generated after separation but for the case of turbulent boundary layer is insensitive.

  • PDF

Large eddy simulation of turbulent boundary layer effects on stratified fluids in a rotating conical container

  • Lee, Sang-Ki;Bae, Jun-Hong;Hwang, Eyl-Seon;M. Sadasivam
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.75-80
    • /
    • 2000
  • We revisit the arrested Ekman boundary layer problem, using a fully non-linear numerical model with the subgrid dissipation modeled by the large eddy simulation method (LES). The main objective of this study is to find out whether the dynamic balance of the arrested Ekman boundary layer explained by MacCready and Rhines (1991) is valid for high Reynolds number. The model solution indicates that for high Reynolds number and low Richardson number flows, the density anomaly diffusion by near-wall turbulent action may become intense enough to homogenize completely the density structure within the boundary layer, in the direction perpendicular to the sloping wall. Then the buoyancy effect becomes negligible allowing a near-equilibrium Ekman boundary layer flow to persist for a long period.

  • PDF

직사각형 프리즘 주위의 유동특성에 대한 경계층 두께의 영향 (Effect of Boundary Layer Thickness on the Flow Characteristics around a Rectangular Prism)

  • 지호성;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.306-311
    • /
    • 2001
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer$(\delta=270mm)$ was the natural turbulent boundary layer at the test section with fully long developing length(18m). The thin boundary layer with 36.5mm thickness was generated by on a smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity and the height of the model was $7.9{\times}10^3$. The mean velocity vector fields and turbulent kinetic energy distribution were measured and compared. The effect of boundary layer thickness is clearly observed not only in the length of separation bubble but also in the reattachment points. The thinner boundary layer thickness, the higher turbulent kinetic energy peak around the model roof. It is strongly recommended that the height ratio between model and approaching boundary layer thickness should be a major parameter.

  • PDF

평판 근접 후류에서 경계층의 유동조건에 따른 레이놀즈 응력분포 (Reynolds Stress Distribution on Boundary Layer Flow Conditions in the Near-Wake of a Flat Plate)

  • 김동하;장조원
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.53-66
    • /
    • 2004
  • An experimental study was carried out in order to investigate the influence of flow conditions on a boundary layer in the near-wake of a flat plate. The flow conditions in the vicinity of the trailing edge that is influenced by upstream condition history are an essential factor that determines the physical characteristics of a near-wake. Tripping wires attached at various positions were selected to change flow conditions of a boundary layer. The flows such as laminar, transitional, and turbulent boundary layer at 0.98C from the leading edge are imposed in order to investigate the evolution of symmetric and asymmetric wake. An x-type hot-wire probe(55P61) is employed to measure at 8 stations in the near-wake. Test results show that the near-wake for the case of a turbulent boundary layer is relatively insensitive to instability after separating at the trailing edge, and Reynolds shear stress in the near-wake for the case of a turbulent boundary layer collapses due to turbulent kinetic energy.

  • PDF

표면조도가 있는 난류경계층에서의 직접수치모사 (Direct numerical simulation of the turbulent boundary layer with rod-roughened wall)

  • 이승현;성형진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.445-448
    • /
    • 2006
  • The effects of surface roughness on a spatially-developing turbulent boundary layer (TBL) were investigated by performing direct numerical simulations of TBLs over rough and smooth walls. The Reynolds number based on the momentum thickness was varied in the range $Re_{\theta}=300{\sim}1400$. The roughness elements used were periodically arranged two-dimensional spanwise rods, and the roughness height was $k=1.5{\theta}_{in}$, which corresponds to $k/{\delta}=0.045{\sim}0.125$. To avoid generating a rough wall inflow, which is prohibitively difficult, a step change from smooth to rough was placed $80{\theta}_{in}$ downstream from the inlet. The spatially-developing characteristics of the rough-wall TBL were examined. Along the streamwise direction, the friction velocity approached a constant value and a self-preserving form of the turbulent stress was obtained. Introduction of the roughness elements affected the turbulent stress not only in the roughness sublayer but also in the outer layer. Despite the roughness-induced increase of the turbulent stress in the outer layer, the roughness had only a relatively small effect on the anisotropic Reynolds stress tensor in the outer layer. Inspection of the triple products of the velocity fluctuations revealed that introducing the roughness elements onto the smooth wall had a marked effect on vertical turbulent transport across the whole TBL. By contrast, good surface similarity in the outer layer was obtained for the third-order moments of the velocity fluctuations.

  • PDF

海洋 亂流境界層內 斷續性의 流體力學的 意義 (FLUID DYNAMIC IMPLICATIONS OF THE INTERMITTENCY OF TURBULENT MOMENTUM TRANSPORT IN THE OCEANIC TURBULENT BOUNDARY LAYER)

  • 정종율;체스터이그로쉬
    • 한국해양학회지
    • /
    • 제18권2호
    • /
    • pp.104-110
    • /
    • 1983
  • 海洋 亂流境界層內 亂流運動量輸送의 斷續性 現象에 對하여 그 本質을 把握 하고 流體力學的 인 의미를 규명하기 위한 영구를 기원했다.또한 단속성 현상과 작비현상의 상호관계도 아울러 연구했다. 본 연구를 통해 난류경계층내에서도 중간층에 속하는 z/h=0.067층에서는 단속성의 크기가 평균난류운동량 수송의 408배의 달하고 상부층 즉 z/h=0.1층에서는 270배에 달함이 밝혀져,이제까지 보고되었던 Gordon(1974)이나 Heathersaw(1974)의 30배의 월등히 크다는 것이 새로운 사실이다. 일부 학자들은 단속성현상을 자기현상의 반영 또는 자기의 유통계의 부딪혀 나타나는 현상이라고 해석한바 있으나 (Gordon,1974; Heathersaw,1974),본 연구에서 밝혀진바에 의하면,이는 마찰 Reynolds 수가>$10^{5}$인 실제해양의 난류경계층내 난류운동의 특징이라는 사실이다.

  • PDF

시간 전진법을 이용한 난류 경계층 유동의 해석 (ANALYSIS OF TURBULENT BOUNDARY LAYER FLOWS USING A TIME MARCHING METHOD)

  • 공효준;이승수
    • 한국전산유체공학회지
    • /
    • 제20권1호
    • /
    • pp.32-38
    • /
    • 2015
  • A 3-dimensional compressible turbulent boundary layer solver has been developed. A time marching method is used to integrate the turbulent boundary layer equations. While the direct integration of the boundary layer equations is performed for unseparated flow regions, the inverse integration is performed for separated flow regions. The program is verified for flows that have analytical solutions or other numerical results. The solver will be merged with an Euler solver for viscous-inviscid interaction.