• Title/Summary/Keyword: Turbofan performance analysis

Search Result 34, Processing Time 0.028 seconds

Performance Modeling and Off-design Performance Analysis of A Separative Jet Turbofan Engine Using SIMULINK (SIMULINK를 이용한 분리형 노즐을 갖는 터보팬엔진 성능모델 구성 및 탈설계점 성능 해석)

  • Kong, Chang-Duk;Park, Gil-Su;Lee, Kyung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.219-224
    • /
    • 2012
  • In this work, a steady-state performance modeling and off-design performance analysis of the 2-spool separate jet turbofan engine named BR715-56 which is a power plant for the narrow body commercial aircraft is carried out for engine performance behaviors investigation and condition monitoring using a commercial code MATLAB/SIMULINK. Firstly, the engine component maps of fan, high pressure compressor, high pressure turbine and low pressure turbine are generated from similar component maps using the scaling method, and then the off-design performance simulation model is constructed by the mass flow matching and the work matching between components. The model is developed using SIMULINK, which has advantages of easy steady-stare and dynamic modelling and user friendly interface function. It is found that the off-design performance analysis results using the proposed model are well agreed with the performance analysis results by GASTURB at various operating conditions.

  • PDF

Two Spool Mixed-Flow Turbofan Engine Performance Analysis Modeling (2 스풀 혼합흐름 배기방식 터보팬 엔진 성능해석 모델링)

  • Seungheon Lee;Hyoung Jin Lee;Sangjo Kim;Gyujin Na;Jung Hoe Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.37-48
    • /
    • 2023
  • In this study, performance analysis modeling of two spool mixed flow type turbofan engine according to steady-state and transient is performed. The target engine is selected as F100-PW-229 from Pratt & Whitney, and main engine components including fan, high pressure compressors, combustion, high pressure turbines, low pressure turbines, mixer, convergent-divergent nozzle are modeled. The cooling effect of turbine through secondary flow path are considered in engine simulation model. We develop in-house Matlab/Simulink-based engine performance analysis program capable of analyzing internal engine state and compare it with GASTURB which is generally used as a commercial engine analysis program.

Study on Component Map Generation and Performance Simulation of 2-spool Separate Flow Type Turbofan Engine Using SIMULINK (SIMULINK를 이용한 2-스풀 분리형 배기방식 터보팬 엔진의 구성품 성능맵 생성 및 성능모사에 관한 연구)

  • Kong, Changduk;Kang, MyoungCheol;Park, Gwanglim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.70-79
    • /
    • 2013
  • In this work, a steady-state performance modeling and off-design performance analysis of the 2-spool separate-flow turbofan engine named (BR715-56) which is a power plant for the narrow body commercial aircraft is carried out for engine performance behaviors investigation and condition monitoring using a commercial code MATLAB/SIMULINK. Firstly, the engine component maps of fan, high pressure compressor, high pressure turbine and low pressure turbine are generated from similar component maps using the scaling method, and then the off-design performance simulation model is constructed by the mass flow matching and the work matching between components. The model is developed using SIMULINK, which has advantages of easy steady-stare and dynamic modelling and user friendly interface function. It is found that the off-design performance analysis results using the proposed model are well agreed with the performance analysis results by GASTURB at various operating conditions.

Control System of Turbofan Engine with Variable Inlet Guide Vane (가변 안내익을 이용한 터보팬 엔진 제어시스템)

  • Bae, Kyoungwook;Min, Chanoh;Cheon, Bongkyu;Lee, Changyong;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.237-242
    • /
    • 2014
  • Surge phenomenon can be occurred in a compressor when the performance of turbofan engine for an aircraft is changed considerably such as take-off phase. This study is aimed to avoid surge phenomenon. This paper propose the PID and Fuzzy control System for the turbofan engine with control inputs, the VIGV(Variable Inlet Guide Vane) in closed loop, and the fuel mass flow in open loop. We design the Dynamic modeling, NPSS S-function, which is connection block of simulink between NPSS(Engine analysis program) and Simulink. Finally, we certify the performance to prevent a serge phenomenon in the VIGV control system using the both methods, PID and fuzzy.

Thermodynamic Analysis of Hybrid Engine Cycle of Brayton and Pulse Detonation Engine (브레이튼과 펄스 데토네이션 복합 엔진 사이클의 열역학적 성능 해석)

  • Kim, Geon-Hong;Koo, Ja-Ye
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • When detonation is occurred, the working fluid is compressed itself, though there are no other devices that compress the fluid. As a result, an engine which uses detonation for a combustion process doesn't need moving parts so that the engine can be lighter than other engines ever exist, and such an engine is often referred to as a pulse detonation engine. Since using detonation has higher performance than using deflagration, many studies have been attempting to control and analyze the engines using detonation as combustion. The purpose of this study is to analyze the hybrid cycle which is consisted of Brayton and Pulse Detonation Engine cycle. At first, we set the theoretical basis of detonation analysis, and after that we consider two hybrid cycles; a turbojet hybrid cycle and a turbofan hybrid cycle. The more energy released, the higher detonation Mach number the detonation wave has. In general, a cycle which has a detonation process has higher performances but thermal efficiency of hybrid turbofan engine.

  • PDF

An Approach to Maintenance Cost Estimation for Aircraft Turbofan Engines (항공기용 터보팬 엔진의 성능변수를 이용한 정비 주기 및 비용 예측에 관한 연구)

  • Kang, Myoung-Cheol;Ogaji, Stephen;Pilidis, Pericles;Kong, Chang-Duk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.257-262
    • /
    • 2008
  • This study presents a detailed analysis of aircraft engine maintenance cost based on the relationships between engine performance and geometric parameters. Some trend equations based on the engine performance and maintenance database were developed for the estimation of shop-visit interval, work-scope, man-hours, material cost and Life Limited Part cost. The results show that this approach can give a more reasonable and detailed estimation of engine maintenance cost than older empirical methods.

  • PDF

A Study on Comparison and Analysis of Correlation Test Procedure for a Turbofan and Turboshaft Engine Test Cell (터보팬 및 터보샤프트 엔진 시운전실 Correlation 시험 절차 비교와 분석에 관한 연구)

  • Juhyeon Gwon;Kangmyung Ko
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.46-52
    • /
    • 2024
  • Engine test cell should provide controlled test environment to properly verify requirements of engine performance and operational characteristics. However, since test cells cannot be perfectly identical to each other, new test cell requires processes to verify reliability of test results and correct differences through correlation testing using a baseline test cell. This paper studies about what should be considered when correlation testing is performed based on commonalities and differences between turbofan and turboshaft engine. It provides examples of correlation test procedure. In the future, it is expected that this study will help set up a standard that can certify test facility according to engine type.

A Study on Steady-State Performance Analysis and Dynamic Simulation for Medium Scale Civil Aircraft Turbofan Engine (I) (중형항공기용 터보팬엔진의 정상상태 성능해석 및 동적모사에 관한 연구 (I))

  • 공창덕;고광웅;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.47-55
    • /
    • 1998
  • Steady-state and transient performance for the medium scale civil aircraft turbofan engine was analyzed. Steady-state performance was analyzed on maximum take-off condition, maximum climb condition, and cruise condition. At 90%RPM of the low pressure compressor, the partload performance was economized. The transient performance was analyzed with cases of the step increase, the ramp increase, the ramp decrease, and the step increase and ramp decrease for the input fuel flow. For the transient performance analysis, work matching between compressor and turbine was needed. Modified Euler method was used the integration of residual torque in work matching equation. At all flight condition, the overshoot of the high pressure turbine inlet temperature was appeared in the step and ramp increase case, and the surge of high pressure compressor was appeared in the step increase case and the ramp increase case within 5.5 seconds of maximum climb condition.

  • PDF

Performance Analysis of an Aircraft Gas Turbine Engine using Particle Swarm Optimization

  • Choi, Jae Won;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.434-443
    • /
    • 2014
  • A turbo fan engine performance analysis and the optimization using particle swarm optimization(PSO) algorithm have been conducted to investigate the effects of major performance design parameters of an aircraft gas turbine engine. The FJ44-2C turbofan engine, which is widely used in the small business jet, CJ2 has been selected as the basic model. The design parameters consists of the bypass ratio, burner exit temperature, HP compressor ratio, fan inlet mass flow, and nozzle cooling air ratio. The sensitivity analysis of the parameters has been evaluated and the optimization of the parameters has been performed to achieve high net thrust or low specific fuel consumption.

Propulsion System Modeling and Reduction for Conceptual Truss-Braced Wing Aircraft Design

  • Lee, Kyunghoon;Nam, Taewoo;Kang, Shinseong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.651-661
    • /
    • 2017
  • A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.