• Title/Summary/Keyword: Turbo-Shaft Engine

Search Result 55, Processing Time 0.023 seconds

Development of T700/701K Engine for KUH (한국형 기동 헬기 엔진 (T700/701K) 개발)

  • Kim, Jae-Hwan;Ahn, Iee-Ki;Lee, Dae-Sung;Sung, Ok-Suck;Sung, In-Kyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.79-84
    • /
    • 2011
  • This paper presents development activities of the T700/701K turbo-shaft engine for Korean Utility Helicopter(KUH). The T700/701K is the first rear-drive variant of the GE's T700 engine which is proven for military applications in the world. The main workscope of the development includes a modification from a front-drive engine to a rear-drive one, an performance enhancement of the power turbine and an incorporation of two channel FADEC(Full Authority Digital Engine Control) system for more reliable operation. The first engine run for development and qualification test was successfully completed in 2008. Since the PFRT(Preliminary Flight Rating Test) has been completed, the first flight of the engine installed in the first prototype of KUH has been successfully demonstrated in March, 2010 and the engine installation compatibility tests are being carried out during KUH flight test. The test and evaluation for qualification has been done except for the low cycle fatigue test up to date.

Qualification Process of T700/701K Engine for KUH (한국형 기동헬기 엔진 (T700/701K) 인증 과정)

  • Jung, Yong-Wun;Kim, Jae-Hwan;Ahn, Iee-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.344-347
    • /
    • 2011
  • This paper presents qualification process of the T700/701K turbo-shaft engine for Korean Utility Helicopter(KUH). The T700/701K is the rear-drive variant of the GE's T700-701C/D engine which was qualified for military applications in the world. The main scope of the development is the modification from a front-drive engine to a rear-drive one, the performance enhancement of the power turbine and the incorporation of two channel FADEC(Full Authority Digital Engine Control) system for more reliable operation. Therefore, T700/701K engine must be qualified by Korean government in order to perform a flight in the country. Reflecting the influence of developing scope, the main requirements including performance and control are verified by test and analysis, while the requirement for module or component that is same to that of T700-701C/D are verified by similarity.

  • PDF

Development of Test Stand for Altitude Test of Reciprocating Engine (왕복동 엔진의 고도성능시험을 위한 시험장치 개발)

  • Lee, Kyung-Jae;Yang, Inyoung;Kim, Chun Taek;Kim, Dongsik;Baek, Cheulwoo;Yang, Gyaebyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.119-127
    • /
    • 2018
  • A test stand for an altitude test of reciprocating engine was designed, manufactured and validated by preliminary tests and simple calculations. The test stand was designed to interface with the altitude turbo-shaft engine test facility of Korea Aerospace Research Institute. Many limiting conditions for altitude test of reciprocating engine were assumed and the test stand was developed to satisfy these limitations. The test stand design was focused especially on the altitude, Mach number and fuel temperature control for reciprocating engine altitude tests with smaller air and fuel flow than those of turbo shaft engines.

A Study on the Starter Control of the Turbo Generator (터보 제너레이터의 시동기 제어에 관한 연구)

  • 박승엽;노민식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.286-293
    • /
    • 2004
  • This paper presents the result of a study on the starter control for a turbo generator. Because a starter in gear box type turbo-generator system is composed of gearbox and brush DC motor, it should be replaced with High Speed Generator(HSG)) in HSG type Turbo-generator. There-ore, it is necessary to design a new starting algorithm and starter. In gearbox type system, brush DC motor is rotated to the designed speed using low voltage-high current battery power. After brush DC motor speed is increased to several times by gearbox, gas turbine engine can be rotated to designed starting speed. If we implement a starter with High Speed Generator(HSG), it is necessary to drive high-speed generator to high-speed motor. High-speed generator with permanent magnet on rotor has a low leakage inductance fur driving high-speed rotation, and it is necessary high DC link voltage for inverter when High-speed generator is driven to high speed. This paper presents result of development of the boost converter for converting high voltage DC from low battery voltage and design of the inverter for controlling a high frequency current to be injected to motor winding. Also, we show performance of the designed starter by driving the turbo generator.

Application of Generalized Experimental Data Correlation in Centrifugal Compressor Design (원시험 데이터 일반화를 적용한 원심압축기 설계)

  • Cho, Gyu-Sik;Kim, Jin-Han;Yang, Soo-Seok;Lee, Dae-Sung;Mileshin, Victor I.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.38-43
    • /
    • 2000
  • Recently, KARI(Korea Aerospace Research Institute, Korea) and CIAM(Central Institute of Aviation Motors, Russia) have made an effort in developing a centrifugal compressor for a small gas turbine engine as part of a collaboration program. This compressor has been designed as a sub-component for an axial-centrifugal compression system for a small turbo-shaft engine aiming adiabatic efficiency higher than 0.81. The geometrical design requirement imposes restrictions to have high inlet hub-to-tip ratio and inlet swirl flow. In this study, the compressor has been designed using the generalized experimental data established from those compressors having pressure ratio of 3.7 to 5. From this generalized empirical correlation, desirable values of design parameters could be obtained. Subsequently, quasi-3D and 3D viscous flow analyses have been performed to ensure the adopted methodology. It is expected that the centrifugal compressor provides total pressure ratio of 4.89, corrected mass flow-rate of 1.64kg/sec, and adiabatic efficiency of 0.815 with inlet hub-to-tip ratio of 0.641. These relatively high total pressure ratio and inlet hub-to-tip ratio are the main distinctive features in this design. Besides, one of the main features of this centrifugal compressor is the adoption of a double-row bladed diffuser to effectively decelerate the transonic flow leaving the impeller. The compressor has been manufactured and will be tested in the near future.

  • PDF

Performance Analysis of Smart UAV Engine through Flight Tests (비행시험을 통한 스마트무인기 엔진 성능 분석)

  • Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.389-392
    • /
    • 2011
  • In this study, the engine performance data was extracted and analyzed through the flight test of Smart UAV which is tilt rotor aircraft. The flight test was conducted for the transition flight regime where the tilt angle of prop-rotor varies from 90 degree to 0 degree and vice versa. The engine performance data such as engine power and specific fuel consumption gathered from flight tests were compared well with the results of engine performance analysis program.

  • PDF

Study on Installed Performance Simulation of Aircraft Gas-Turbine Engine Considering Inlet and Exhaust Losses (흡배기구 손실예측 및 이를 고려한 항공기 가스터빈의 장착 성능모사 연구)

  • Kong, Chang-Duk;Owino, George.Omollo.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.100-108
    • /
    • 2006
  • Experimental study has been a general way to evaluate inlet and exhaust duct performances, but this is not only costly but also time consuming. Computational simulation is hence replacing experimental study and consequently time and cost saving. This paper therefore aims to investigate typical component performance of the intake and exhaust ducts using 3D representation. In this study a specific inlet and exhaust was modeled and analyzed to estimate its losses and flow field using computational fluid dynamic program with flow visualization capabilities. A process that requires geometry data to be modeled. That allowed for possibility of design trade off in designing phase. Installed performance of a specific turbo shaft engine was finally evaluated with the estimated inlet, exhaust and other accessories losses.

The Effect of the Embedded WGV on the Engine Performance for a 2-liter Turbo-charged Gasoline Engine (2 리터급 터보과급 가솔린 기관에서 내장형 WGV가 기관 성능에 미치는 영향)

  • Jang, Jongkwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.232-241
    • /
    • 2016
  • The turbocharger, to decrease the harmful exhaust gas(CO, HC and etc.) and $CO_2$ emission as well as the increase of the engine output, would be an useful method for engine downsizing. Therefore the thermal endurance of turbine blade, the lubrication of turbine shaft and the engine knock according to the supercharge of the inlet air, had been studied. And there had been much progress in these research tasks to be achieved a breakthrough. But a study on the built-in WGV of a gasoline engine for a passenger car which may effect on the engine performance, is few. In this paper, the effect of the embedded WGV on the engine performance was performed through the endurance test, which was conducted more than 300 hrs using the 4 stroke, 1998 cc, water-cooled engine. To sum up the major results, there were an abrasion in the area of the WGV head edge and the thermal deformation on the WGV head face, These phenomena led to reducing the boost pressure which caused the reduction in the volumetric efficiency of the engine. It resulted in decreasing the engine power gradually during the life cycle of the embedded WGV.

A Study on Defect Diagnostics for Health Monitoring of a Turbo-Shaft Engine for SUAV (스마트 무인기용 터보축 엔진의 성능진단을 위한 결함 예측에 관한 연구)

  • Park Juncheol;Roh Taeseong;Choi Dongwhan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.248-251
    • /
    • 2005
  • In this paper, health monitoring technique has been studied for performance deterioration caused by the defects of the gas turbine. The parameters for performance diagnostics have been extracted by using GSP program for modeling the target engine. The virtual sensor model for the health monitoring has been built of those data. The position and magnitude of the defects of the engine components have been determined by using Multiple Linear Regression technique and the method using the weight in order to diagnose the single and multiple defects.

  • PDF

Performance Analysis of an 74Kw Industrial Turbo-Shaft Gas Thrbine Engine (74 KW급 터보축 싸이클 산업용 가스터빈 엔진의 성능 예측)

  • Kim, Su-Yong;Yun, Ui-Su;Jo, Su-Yong;O, Gun-Seop
    • 연구논문집
    • /
    • s.26
    • /
    • pp.43-50
    • /
    • 1996
  • Present paper describes on/off design performance analysis of an 74KW industrial turboshaft gasturbine engine. Procedures to match between the compressor, combustor and turbine have been incorporated into the developed program satisfying compatibility requirement of flow and work and ratational speed. The validity of the performance results from the developed program are yet to be proved through performance experiments of the resultant engine, but comparison of the present results with those from "GASCAN(Thermoflow:America) under similar mass inlet flow, pressure ratio, and speed condition show good agreement despite present results underpredict 6-10% for power and up to 3% in efficiency, respectively.

  • PDF