• Title/Summary/Keyword: Turbo-Chiller

Search Result 32, Processing Time 0.03 seconds

Dynamic Characteristics of a Turbo-chiller Rotor-Bearing System having a Lateral-Torsional Coupling by Gear Mesh Effect (기어 물림 효과에 의한 횡-비틀림 연성을 갖는 터보-냉동기 로터-베어링 시스템의 동특성)

  • Lee, An-Sung;Ha, Jin-Woong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1034-1039
    • /
    • 2000
  • In turbo-machines operated at high speeds through gear speed increasers a precise coupled analysis of lateral and torsional vibrations is required to achieve highly reliable designs with low vibration and low noise levels, where the vibration coupling is due to the gear pair mesh stiffness. In this paper, applying the generalized coupled lateral-torsional finite element model of a gear pair element, has been analyzed a coupled lateral-torsional vibration of the prototype 800 RT turbo-chiller rotor-bearing system with a bull-pinion gear speed increaser. Results have shown that the coupled torsional natural frequencies have decreased due to the coupling effect of lateral vibration and particularly, the 2nd torsional natural frequency and its mode shape have had big changes. However, changes of lateral vibration characteristics have been noticed only at high lateral whirl natural frequencies above 15,000 rpm.

  • PDF

A Study on the Starting Characteristic of Variable Speed Centrifugal Chiller (가변속 터보냉동기의 기동특성에 관한 연구)

  • Kim, Hee-Sun;Yun, Hong-Min;Na, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.512-513
    • /
    • 2012
  • The electric motor is essential to drive turbo machinery. In order to overcome the speed limitations of general motors, the inverter is used to perform high speed to tens of rpm. The high speed drives are widely used in many applications such as turbo blower, turbo centrifugal compressors, and pump using air bearing technique. Starting of high speed motor can cause step out, stall, oscillation of motor because the phase inductance is much smaller than that of ordinary motor. This paper studied on the starting characteristic of variable speed centrifugal chiller considering high speed motor characteristics. Finally, the superiority of the inverter is verified by experimental results.

  • PDF

Design and Performance Test of 1300RT Centrifugal Compressor for a HFC-134a Turbo-Chiller (HFC-134a용 1300RT급 원심압축기의 설계 및 성능시험)

  • Ko, Kyung-Tae;Choi, Young-Min;Shin, Jeong-Kwan;Kim, Kyung-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.672-677
    • /
    • 2001
  • This study has been conducted to design the high efficiency centrifugal compressor for a HFC-134a. The 2-stage centrifugal compressor consists of inlet guide vanes, two impellers with splitters, a deswirler, a vaneless diffuser and a volute casing. We have designed the high efficiency centrifugal compressor by applying the repeated design procedure including a meanline design, a 3D geometry generation of 1st and 2nd impellers etc. Also, a fluid dynamic calculation of impellers and deswirler have been conducting using a commercial code STAR-CD.

  • PDF

Numerical Study on the Performance Characteristics of a Centrifugal Compressor for a R134a Turbo-Chiller (R134a 터보냉동기용 원심압축기의 성능특성에 관한 수치해석적 연구)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Park, Woon-Jean
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.2 s.23
    • /
    • pp.14-20
    • /
    • 2004
  • In this study, the overall performance and the local flow field of the centrifugal compressor with the refrigerant HFC-l34a were numerically studied using CFX-TASCflow. The thermodynamic and transport properties of the refrigerant gas were modeled by REFPROP which is NIST refrigerant properties database. The impacts of a grid qualify, discretization scheme, turbulent model and interaction between a impeller and a cascade diffuser were analyzed comparatively. The results were compared with experimental data and 1-D design results using COMPAL and agreed well with others. The numerical method and data obtained in this study can be applied to the design and modification of centrifugal compressors with real gases

Rotordynamic Design of a Turbo-Chiller Compressor Rotor-Bearing System (터보냉동 압축기 로터-베어링 시스템의 동특성 설계)

  • 이안성;이동환;최상규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.255-260
    • /
    • 1998
  • A detailed rotordynamic design analysis is performed with a turbo-chiller compressor rotor-bearing system. A pinion is machined into a compressor shaft and the pinion is driven by a bull gear to a rated speed of 14,600 rpm. Utilizing a finite element method each bearing loads are calculated considering various gear loadings as well as the rotor weight itself. A Partial bearing and a 3-Lobe bearing are designed as the compressor impeller out-board bearing and in-board bearing, respectively. Finally a complex rotordynamic analysis of the compressor rotor-bearing system is carried out to evaluate the system whirl natural frequencies, stabilities, and unbalance responses.

  • PDF

Numerical Study on Tip Clearance Effect on Performance Characteristics of a Centrifugal Compressor for a R134a Turbo-Chiller (R134a 터보냉동기용 원심압축기의 익단간극이 성능특성에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Park, Woon-Jean
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.38-44
    • /
    • 2004
  • In this study, the overall performance and the effect of the tip leakage flow of the centrifugal compressor with a refrigerant HFC-l34a were numerically studied using CFX-TASCflow. To study the effect of the tip leakage flow, the numerical study of the overall performance of HFC-l34a centrifugal compressor with a cascade diffuser was preceded and compared with the experimental result. Six different tip clearances were used to consider the influence of the tip clearance on the performance. The tip leakage flow was illustrated for qualitative discussion. The results obtained in this study can be applied to the determination of the cold clearance.

Numerical Study on Tip Clearance Effect on Performance Characteristics of a Centrifugal Compressor for a R134a Turbo-Chiller (R134a 터보냉동기용 원심압축기의 익단간극이 성능특성에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Park, Woon-Jean
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.451-456
    • /
    • 2003
  • In this study, the overall performance and the effect of the tip leakage flow of the centrifugal compressor with the refrigerant HFC-l34a were numerically studied using CFX-TASCflow. To study the effect of a tip leakage flow, the numerical study of the overall performance of HFC-l34a centrifugal compressor with a cascade diffuser was preceded and compared with experimental result. Six different tip clearances were used to consider the influence of a tip clearance on performance. The tip leakage flow was illustrated for qualitative discussion. The results obtained in this study can be applied to the determination of the cold clearance.

  • PDF

Development of a Fault Detection and Diagnosis Algorithm Using Fault Mode Simulation for a Centrifugal Chiller (고장모사 시뮬레이션을 이용한 터보냉동기의 고장검출 및 진단 알고리즘 개발)

  • Han, Dong-Won;Chang, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.669-678
    • /
    • 2008
  • When operating a complex facility, Fault Detection and Diagnosis (FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. In this research, FDD algorithm was developed using the general pattern classifier method that can be applied to centrifugal chiller system. The simulation model for a centrifugal chiller system was developed in order to obtain characteristic data of turbo chiller system under normal and faulty operation. We tested FDD algorithm of a centrifugal chiller using data from simulation model at full load performance and 60% part load performance. In this research, we presented fault detection method using a normalized distance. Sensitivity analysis of fault detection was carried out with respect to fault progress. FDD algorithm developed in this study was found to indicate each failure modes accurately.

In-Situ Measurement of Chiller Performance and Thermal Storage Density of an Ice Thermal Storage System (빙축열 시스템 냉동기 성능 및 축열밀도 현장측정 기법연구)

  • Shin Younggy;Yang Hooncheul;Tae Choon-Seob;Cho Soo;Kim Youngil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1204-1209
    • /
    • 2005
  • In-situ measurement was made to evaluate chiller performance and thermal storage density of an ice thermal storage system. The system belonged to a big hotel and the measurement was conducted during late October. Owing to very small cooling load, the data logging was possible for a single thermal storage cycle. However, operation history of the chiller showed a relatively good spectrum of data for performance evaluation. COP and thermal storage density were calculated. The COP at full load was about 4.07, which was lower than $4.8\~6.4$ of new chillers. The measured storage density was about $10.9RT-h/m^3\;(=152MJ/m^3)$, which also was lower than a criterion of normal performance $(above\;13.0RT-h/m^3\;or\;181MJ/m^3)$. The study result provides technical basis for quantitative ESCO business scenario.