• Title/Summary/Keyword: Turbo equalization

Search Result 47, Processing Time 0.021 seconds

Multi-Stage Turbo Equalization for MIMO Systems with Hybrid ARQ

  • Park, Sangjoon;Choi, Sooyong
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.333-339
    • /
    • 2016
  • A multi-stage turbo equalization scheme based on the bit-level combining (BLC) is proposed for multiple-input multiple-output (MIMO) systems with hybrid automatic repeat request (HARQ). In the proposed multi-stage turbo equalization scheme, the minimum mean-square-error equalizer at each iteration calculates the extrinsic log-likelihood ratios for the transmitted bits in a subpacket and the subpackets are sequentially replaced at each iteration according to the HARQ rounds of received subpackets. Therefore, a number of iterations are executed for different subpackets received at several HARQ rounds, and the transmitted bits received at the previous HARQ rounds as well as the current HARQ round can be estimated from the combined information up to the current HARQ round. In addition, the proposed multi-stage turbo equalization scheme has the same computational complexity as the conventional bit-level combining based turbo equalization scheme. Simulation results show that the proposed multi-stage turbo equalization scheme outperforms the conventional BLC based turbo equalization scheme for MIMO systems with HARQ.

Blind Turbo Equalization System with Beamforming (빔포밍이 적용된 블라인드 터보 등화기)

  • Kim, Yongguk;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.10
    • /
    • pp.850-857
    • /
    • 2013
  • Turbo equalizer system is a method which can improve performance through a combination of the equalizer and decoder. The turbo equalizer has been mainly used a MAP equalizer. However, this turbo equalizer has a disadvantage that has a high computational complexity. To overcome the disadvantage and to improve efficiency of bandwidth, blind turbo equalization system is proposed. blind turbo equalization system has low equalization performance than conventional turbo equalization system. To circumvent this problem, we adapt the beamforming method based on the MUSIC algorithm. we confirmed that the proposed method improves the equalization performance.

Performance Analysis of Turbo Equalizer in the Multipath Channel (다중 채널 환경에서 터보 등화기 성능 분석)

  • Jung, Ji Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.169-173
    • /
    • 2012
  • This paper investigates the performance of Turbo equalization in wireless multipath channels. Turbo equalization mainly consists of a SISO(soft-in soft-out) equalizer and a SISO decoder. Iterative channel estimators can improve the accuracy of channel estimates by soft information fed back from the SISO decoder. Comparing iterative channel estimators with LMS(least mean square) and RLS(recursive least squares) algorithms, which are the most common algorithms to estimate and track a time-varying channel impulse response, the iterative channel estimator with RLS converges more faster than the one with LMS. However, the difference of BER(bit error rate) performances gradually decreases as the number of iterations for Turbo equalization increases.

A Study on Turbo Equalization for MIMO Systems Based on LDPC Codes (MIMO 시스템에서 LDPC 부호 기반의 터보등화 방식 연구)

  • Baek, Chang-Uk;Jung, Ji-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.504-511
    • /
    • 2016
  • In this paper, MIMO system based on turbo equalization techniques which LDPC codes were outer code and space time trellis codes (STTC) were employed as an inner code are studied. LDPC decoder and STTC decoder are connected through the interleaving and de-interleaving that updates each other's information repeatedly. In conventional turbo equalization of MIMO system, BCJR decoder which decodes STTC coded bits required two-bit wise decoding processing. Therefore duo-binary turbo codes are optimal for MIMO system combined with STTC codes. However a LDPC decoder requires bit unit processing, because LDPC codes can't be applied to these system. Therefore this paper proposed turbo equalization for MIMO system based on LDPC codes combined with STTC codes. By the simulation results, we confirmed performance of proposed turbo equalization model was improved about 0.6dB than that of conventional LDPC codes.

Novel Turbo Receiver for MU-MIMO SC-FDMA System

  • Wang, Hung-Sheng;Ueng, Fang-Biau;Chang, Yu-Kuan
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.309-317
    • /
    • 2018
  • Single carrier-frequency-division multiple access (SC-FDMA) has been adopted as the uplink transmission standard in fourth-generation cellular networks to facilitate power efficiency transmission in mobile stations. Because multiuser multiple-input multiple-output (MU-MIMO) is a promising technology employed to fully exploit the channel capacity in mobile radio networks, this study investigates the uplink transmission of MU-MIMO SC-FDMA systems with orthogonal space-frequency block codes (SFBCs). It is preferable to minimize the length of the cyclic prefix (CP). In this study, the chained turbo equalization technique with chained turbo estimation is employed in the designed receiver. Chained turbo estimation employs a short training sequence to improve the spectrum efficiency without compromising the estimation accuracy. In this paper, we propose a novel and spectrally efficient iterative joint-channel estimation, multiuser detection, and turbo equalization for an MU-MIMO SC-FDMA system without CP-insertion and with short TR. Some simulation examples are presented for the uplink scenario to demonstrate the effectiveness of the proposed scheme.

The Performance of Turbo Equalization for Wireless Cellular Systems over Continuous Time Varying Channels (연속 시변채널에서의 이동통신 시스템을 위한 터보 등화기법의 성능)

  • 박종일;최영윤;이동성
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.75-78
    • /
    • 1999
  • The iterative usage of soft outputs increases the performance of digital radio receiver. The feedback of reliability information reduces the channel estimation errors and increases the performance of equalization. This paper investigates the turbo equalization techniques for wireless cellular systems over continuous time varying channel. Simulation results over a GSM channel were presented.

  • PDF

Adaptive Turbo System (적응 터보 시스템)

  • Choi, Hyun-Woo;Lee, Jae-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.85-86
    • /
    • 2006
  • In this paper, we propose an adaptive turbo system for a varying channel between being frequency-flat and frequency-selective. The proposed system unites a turbo code and a turbo equalization and selects one of two algorithms adaptively to the channel variation with the feedback information from the receiver. The performance of the proposed system in varying channel is evaluated by computer simulation when the feedback delay exists. It is shown that when the feedback delay is moderate, the proposed system outperforms both the conventional turbo code system and turbo equalization system without increasing the complexity.

  • PDF

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

Turbo Equalization and Decoding with Diversity Reception on the Frequency-Selective Fading Channel (주파수 선택적 페이딩 채널에서의 다이버시티 수신 터보 등화 및 복호화)

  • 임동민
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.39-42
    • /
    • 1999
  • In this paper, a method based on the turbo principle is presented which combines diversity reception, equalization, and channel decoding, to combat the high transmission losses over the frequency-selective fading channel. The simulation results show that with the method presented, the BER performance within 0.3 ㏈ from that on the AWGN channel can be obtained over the frequency-selective fading channel in the investigated scenarios.

  • PDF

A Novel Adaptive Turbo Receiver for Large-Scale MIMO Communications

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Tsai, Bo-Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.2998-3017
    • /
    • 2018
  • Massive (large-scale) MIMO (multiple-input multiple-output) is one of the key technologies in next-generation wireless communication systems. This paper proposes a high-performance low-complexity turbo receiver for SC-FDMA (single-carrier frequency-division multiple access) based MMIMO (massive MIMO) systems. Because SC-FDMA technology has the desirable characteristics of OFDMA (orthogonal frequency division multiple access) and the low PAPR (peak-to-average power ratio) of SC transmission schemes, the 3GPP LTE (long-term evolution) has adopted it as the uplink transmission to meet the demand high data rate and low error rate performance. The complexity of computing will be increased greatly in base station with massive MIMO (MMIMO) system. In this paper, a low-complexity adaptive turbo equalization receiver based on normalized minimal symbol-error-rate for MMIMO SC-FDMA system is proposed. The proposed receiver is with low complexity than that of the conventional turbo MMSE (minimum mean square error) equalizer and is also with better bit error rate (BER) performance than that of the conventional adaptive turbo MMSE equalizer. Simulation results confirm the effectiveness of the proposed scheme.